Practical Sample and Hold Circuit

Control input open and closes solid-state switch at sampling rate f_s.

Modes of operation - tracking (switch closed) hold (switch open)

Sample and Hold Parameters

- **acquisition time** - time for instant switch closes until V_i within defined % of input. Determined by input time constant $\tau = R_{in}C$. 5τ value = 99.3% of final value
- **aperture time** - time it takes switch to open
- **decay rate** - rate of discharge of C when circuit is in hold mode
Sampling Rate

To accurately reproduce the analog input data with samples the sampling rate, f_s, must be twice as high as the highest frequency expected in the input signal. This is known as the Nyquist criterion.

$$f_{s(min)} = 2f_h$$

Where f_h = the highest discernible f component in input signal

$f_{s(min)}$ = minimum sampling f

Nyquist rate is the minimum frequency and requires an ideal pulse to reconstruct the original signal into an analog value.

Sampling a signal is a form of modulation that creates signals that have a fundamental frequency spectrum of the original signal and an infinite number of harmonic aliases.
Sampled Signal Frequency Spectrum

Sampling above occurs with $f_s > 2f_h$

Sampling at less than $2f_h$ causes aliasing and folding of sampled signals. This means that the original information will not be reproduced at the same frequency as the original.

Folding occurs when the lower frequencies of a harmonic envelope coincide with the higher frequencies of another envelope.
Aliasing occurs when a harmonic frequency is introduced into the original input frequency range.

For signals to be reconstructed correctly, the harmonic components must all occur in the range 0 to $f_s/2$.

Take a frequency spectrum view of the sampled signals to get a better understanding of the aliasing and folding.

Sampling at $f_s = 1000$ Hz with an input frequency of f_{in} of 100 Hz. Ten samples/period - above Nyquist rate

Lowpass filter extracts the range 0 to 500 Hz 0 to $+f_s/2$

Lower f_s: let $f_s = 60$ Hz
\[f_s = 60 \text{ Hz} \quad f_{in} = 100 \text{ Hz} \]

\[f_1 = f_s - f_{in} = -40 \text{ Hz} \quad f_2 = f_s + f_{in} = 160 \text{ Hz} \]

\[f_{11} = -f_2 = -160 \text{ Hz} \]

Increase sampling \(f \) to 80 Hz

\[f_s = 80 \text{ Hz} \quad f_{in} = 100 \text{ Hz} \]

\[f_1 = f_s - f_{in} = -20 \text{ Hz} \quad f_2 = f_s + f_{in} = 180 \text{ Hz} \]

\[f_{11} = -f_2 = -180 \text{ Hz} \]

The range to reproduce will be 0 - 40 Hz
Sampling Rate of 80 Hz with input of 100 Hz.

The 20 Hz signal is reproduced since it falls in the range of 0 - \(f_s/2\).

The last two graphs are examples of undersampling with \(f_s < f_{\text{in}}\)

Increase sampling \(f\) to 100 Hz

\[
f_s = 100 \text{ Hz} \quad f_{\text{in}} = 100 \text{ Hz}
\]

\[
f_1 = f_s - f_{\text{in}} = 0 \text{ Hz} \quad f_2 = f_s + f_{\text{in}} = 200 \text{ Hz}
\]

\[
f_{11} = -f_2 = -200 \text{ Hz}
\]
Sampling f 100 Hz; input f 100 Hz

With the sampling rate set equal to the input f, the reconstructed signal becomes dc. Other harmonics are generated at +- 200 Hz

Same point sampled on each cycle of sine wave
Folding occurs when \(f_s > f_{in} \) bus less than the Nyquist Rate.

\[
\begin{align*}
 f_s &= 125 \text{ Hz} \quad f_{in} = 100 \text{ Hz} \\
 f_1 &= f_s - f_{in} = 25 \text{ Hz} \quad f_2 = f_s + f_{in} = 225 \text{ Hz} \\
 f_{11} &= -f_2 = -225 \text{ Hz}
\end{align*}
\]

A 25 Hz signal is reconstructed since it falls in the range 0 to \(f_s/2 \).

With a sample rate of 125 Hz we get the same points as though we had sampled a 25 Hz signal.

The lower frequencies of \(f_s \) appear in range 0- 62.5 Hz.
In on/off control error signal is binary in nature. Comparator is hardware or software that compares the sensor value to the desired value (setpoint) and then outputs a binary value.

Final control element is run at either 100% or 0%
On/off Control Example

Home heating

When room temperature falls below a preset temperature, the thermostat contacts activate the furnace fan and fuel supply.

Furnace is on with 100% output or off with 0% output
Criteria For Application of On/off Control

1.) Precise control must not be required

2.) Process must have sufficient internal storage capacity to allow final control element to supply the load while measurement is taken.

3.) Energy entering the load must be small compared to the stored energy in the process

Controller Time Plots
Differential Gap Controller

To improve the stability of an on/off controller a hysteresis is added to the comparator element. This is called differential gap control.

Logic - when measured variable goes above upper boundary final control element turns on. Remains on until variable falls below lower level. Gap also known as dead zone. Typically 0.5-2.0% of full range.

Gap introduces a known control error but reduces cycling.
Analog Signal Conversion

Two Problems
Input - analog-to-digital conversion
continuous signals converted to
discrete values (Analog-to-digital)

Output - digital-to-analog conversion
discrete values converted to
continuous signals
(Digital-to-analog)

Number of bits in digital signal determines the
resolution of the digital signals.
Depends on voltage span also.

Resolution - smallest number that can be measured
Accuracy - is the number measured correct
Review of Binary Numbers

Only two symbols in system \{ 1, 0 \} called bits
Logic 1 and Logic 0 represent on/off states in circuits

System is positional using powers of 2

\[
\begin{align*}
2^0 &= 1 \\
2^1 &= 2 \\
2^2 &= 4 \\
2^3 &= 8 \\
2^4 &= 16 \\
2^5 &= 32 \\
2^6 &= 64 \\
2^7 &= 128 \\
2^8 &= 256 \\
2^9 &= 512 \\
2^{10} &= 1024 \\
2^{11} &= 2048 \\
2^{12} &= 4096
\end{align*}
\]

Group of 8 bits called byte
Two bytes, 16 bits, called word

Left-most bit is usually the most significant bit (MSB)
The right most is usually the least significant bit (LSB)

\[
\begin{align*}
\text{MSB (}2^7\text{)} & \quad \text{LSB (}2^0\text{)} \\
1 & 0 1 1 1 0 1 0
\end{align*}
\]

A n bit binary number can represent \(2^n\) different decimal numbers. This includes a zero.
Review of Binary Numbers

Converting binary to decimal - use the power of 2 associated with the position and multiply it by the bit value.

\[
\begin{array}{c|c}
\text{MSB (}2^7\text{)} & \text{LSB (}2^0\text{)} \\
10111010 & \\
\end{array}
\]

Example: convert the number above

\[
10111010 = 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + \ldots \times 2^0 \\
10111010 = 128 + 0 + 32 + 16 + 8 + 0 + 2 + 0 \\
10111010 = 186_{10}
\]

To convert a decimal number into a binary value, use repeated division by 2 of decimal value record remainder (1, 0) and continue until division is no longer possible.

Example: convert 19 to binary use table

\[
\begin{array}{c|c|c|c}
9 & 19 & \text{decimal} \\
1 & \text{binary} \\
\end{array}
\]

19/2 = 9 remainder 1
Example: Decimal-to-binary conversion (cont.)

9/2 = 4 remainder 1

\[
\begin{array}{c|c|c|c}
\text{decimal} & 4 & 9 & 19 \\
\hline
\text{binary} & 1 & 1 & \text{decimal}
\end{array}
\]

4/2 = 2 remainder 0

\[
\begin{array}{c|c|c|c|c}
\text{decimal} & 2 & 4 & 9 & 19 \\
\hline
\text{binary} & 0 & 1 & 1 & \text{decimal}
\end{array}
\]

2/2 = 1 remainder 0

\[
\begin{array}{c|c|c|c|c|c}
\text{decimal} & 1 & 2 & 4 & 9 & 19 \\
\hline
\text{binary} & 0 & 0 & 1 & 1 & \text{decimal}
\end{array}
\]

1/2 = 0 remainder 1

\[
\begin{array}{c|c|c|c|c|c}
\text{decimal} & 0 & 1 & 2 & 4 & 9 & 19 \\
\hline
\text{binary} & 1 & 0 & 0 & 1 & 1 & \text{decimal}
\end{array}
\]

19 = 10011 binary
Resolution and Accuracy of Digital Signals

Resolution determined by the number of bits

Analog input vs Digital Output (3 bit system)

The output is a discretized version of the continuous input

Error determined by the step size of the digital signal
Resolution Formulas

Resolution in terms of full scale voltage is equal to value of Least Significant bit

\[V_{\text{LSB}} = \frac{V_{\text{fs}}}{2^n} \]

Where

- \(V_{\text{fs}} \) = full scale voltage
- \(n \) = number of bits
- \(V_{\text{LSB}} \) = voltage value of LSB

Converting to digital value with a finite number of bits also introduces quantization errors.

Quantization error ranges from + \(V_{\text{LSB}} \) to -\(V_{\text{LSB}} \).

Numerically, maximum quantization error is equal to:

\[Q.E. = \frac{V_{\text{LSB}}}{2} \]

Where

- \(Q.E. \) = quantization error
- \(V_{\text{LSB}} \) = voltage value of LSB

Percent resolution

\[\%\text{resolution} = \frac{1}{2^n - 1} \cdot 100\% \]

Where

- \(n \) = number of bits in digital representation
Digital Resolution and Error

Error in natural binary coding is $\pm \frac{1}{2}$ LSB

Resolution 3-bit system

$$\text{LSB} = \frac{V_{fs}}{2^n}$$

$$V_{\text{LSB}} = \frac{10V}{2^3} = \frac{10}{8} = 1.25$$

Max. digital value less analog value by value of LSB
Example: An 8-bit digital system is used to convert an analog signal to digital signal for a data acquisition system. The voltage range for the conversion is 0-10 V. Find the resolution of the system and the value of the least significant bit.

\[
\text{resolution} = \frac{1}{2^n - 1} \times 100\%
\]

\[
\text{LSB} = \frac{V_{fs}}{2^n}
\]

\[
V_{fs} = 10 \text{ Vdc} \quad n = 8 \text{ bits}
\]

\[
\text{LSB} = \frac{V_{fs}}{2^8} = \frac{10 \text{ V}}{256} = 0.0390625 \text{ V}
\]

The digital convert above is replaced with a 12 bit system. Compute the resolution and the value of the least significant bit.

\[
\text{resolution} = \frac{1}{2^{12} - 1} \times 100\%
\]

\[
\text{LSB} = \frac{V_{fs}}{2^{12}} = \frac{10 \text{ V}}{4096} = 0.002441 \text{ V}
\]

Signal converted to 4096 different levels \(n = 12 \)
Effects of Resolution

Sampled Analog Wave

Digital Reconstruction

Difference between analog value and digital reconstruction is quantizing error
Binary-weighted Resistor Digital-to-Analog Converter (DAC)

summing amplifier with digitally controlled inputs

DAC shown with 000...0 as input

Rules of Ideal OP AMPS
\(I_{in} = 0, \quad Z_{in} = \infty \)

\[
I_{\text{in}} = \frac{V}{(2^{n-1})R}
\]

\[
I_3 = \frac{V}{4R}
\]

\[
I_2 = \frac{V}{2R}
\]

\[
I_1 = \frac{V}{R}
\]

\[
I_A = I_1 + I_2 + I_3 + I_{\text{in}}
\]

\[
I_A = B(n-1) \frac{V}{R} + B(n-2) \frac{V}{2R} + B(n-3) \frac{V}{4R} + \ldots + B_0 \frac{V}{(2^{n-1})R}
\]

\[
I_A = -I_F
\]

B0, B(n-3), B(n-2), ...B(n-1) take on values of 1 or 0 depending on the digital output

\[
V_0 = -I_F \cdot R_F
\]

\[
V_0 = -R_F \sum_{i=1}^{n} \frac{B(n-i) \cdot V}{2^{i-1}R}
\]

Formula for output
Example: For the binary-weighted resistor DAC below find the output when the input word is 1101_2 $V = 10$ Vdc $R_f = R$

$$V_o = -R_f \sum_{n=0}^{4} \frac{B(n-i) \cdot V}{2^n R}$$

$$V_o = -R_f \left[\frac{3 \cdot V}{2^3 R} + \frac{1 \cdot V}{2^2 R} + \frac{0 \cdot V}{2^1 R} + \frac{1 \cdot V}{2^0 R} \right]$$

$$V_o = -R_f \left[\frac{1 \cdot (10V)}{2^3} + \frac{1 \cdot (10V)}{2^2} + \frac{0 \cdot (10V)}{2^1} + \frac{1 \cdot (10V)}{2^0} \right]$$

$$V_o = -\frac{10V + 10V + 0 + 10V}{2} = -\frac{30V}{2} = -15V$$
Limitations of Binary-weighted Resistor DACs

Typical Values of digital words 8-12 bits (max 20 bits)

Range of resistors $2^{12}/1 = 4096/1$

If smallest resistor = 10k largest must be 4096*10k or 40,960,000 ohms 40.96 Meg!!!

Limited to 6 - 8 words due to scale of resistors

Current Resolution of OP AMPS

Assuming $V = 10 \text{ Vdc}$

For LSB $I_{LSB} = V/R*2^{(n-1)}$

For value of $R=10k$

$I_{LSB} = 10/40.96\text{M} \Omega = 2.44 \times 10^{-7} \text{ A}$

Approaches range of bias currents needed to activate the OP AMP