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LESSON 8:  MODELING PHYSICAL 

SYSTEMS WITH LINEAR 

DIFFERENTIAL EQUATIONS  
 
ET 438a Automatic Control Systems Technology 
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After this presentation you will be able to: 

 

 Explain what a differential equation is and how it can represent 

dynamics in physical systems. 

 Identify linear and non-linear differential equations. 

 Identify homogeneous and non-homogenous differential 

equations. 

 Write input/output equations using derivatives and integrals for 

electrical and mechanical systems. 
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Linear Dynamic Systems 
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Definition  

Linear Differential Equation - a linear combination of  derivatives 

of an unknown function and the unknown function.  Derivatives 

capture how system variables change with time. 

Linear systems - represented with linear differential equations 

Solving a differential equation means find a function that changes 

with time that satisfies the equation.  The result is a function and not 

a number.  This function describes how a quantity changes with 

respect to the independent variable, usually time in a control system.  

This can be done using analytic or numerical methods.  

Linear Dynamic Systems 
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Example  8-1  Series RL circuit with a current established initially. What does 

current do  over time? 

i(t) 

L 

vr(t) + 

vL(t) 

+ 

A 1)0(i  Write KVL equation around the circuit 

R 

R)t(i)t(vR  









dt

)t(di
L)t(vL

0)t(v)t(v RL 

0R)t(i
dt

)t(di
L 









To solve - find i(t) that satisfies the above 

equation with initial current of 1 A.   Can do 

analytically or numerically.   
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Linear Differential Equations 
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More Complex Differential Equations 

0)t(i7)t(i
dt

d
2)t(i

dt

d
2

2


Can have higher order 

Derivatives 2, 3, 4… etc 

Above is a 2nd order linear ODE (ordinary differential equation) 

0ii
dt

d
2i

dt

d 2

2

2


Implied function of  

time.  i=i(t)  

Above is 2nd order,  non-linear ODE  

Squared i makes it 

non-linear 

When right-hand side (RHS) is 0, equation called homogeneous.  Implies no outside stimulation 

0v)vsin(v
dt

d
2

2








 2nd order,  non-linear ODE 

Sine of unknown function v(t)  

Physical System Examples 
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The following circuit creates a homogenous differential equation. 

t=0 

R=10k 

10 mH 

5 A 

Establish 

current 

i(0)= 5 A 

Current can not change instantaneously in inductor.  Current varies in 

time based in the initial value of i(0)= 5A 

No I 

source t>0 
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Physical System Examples 
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The following circuit creates a non-homogenous differential equation. 

Current builds from initial value. Practical example: Energize a relay 

coil with the current source.  Current source drives the system. 

R=10k 

10 mH 

5 A 

i(-0)= 0 A 

Initial current 0 

Establish 

current 

t=0 

Identify Example Equations 
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Identify which of the following equations as linear/non-linear and 

homogeneous/non-homogeneous. 

.3
d

d t
x( )t x( )t

2
0

d

d t
v

2

sin( )v 0

.6
d

d t
v .2 v .V m sin( )t

.4
d

d

2

2t
i .2

d

d t
i .7 i .I o e

t


0

.L
d

d t
i( )t .R i( )t 0
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Differential Equations For Control Systems  
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Equations have constant coefficients and are linear.   

  Single input  stimulation r(t) 

  Single output variable x(t) 

)t(rb)t(xa)t(x
dt

d
a)t(x

dt

d
a...  )t(x

dt

d
a 0112

2

2n

n

n 

General form 

Where an.....a2, a1 a0 and b0 are constants 

What can r(t) be? 

Differential Equations For Control Systems  
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Typical input functions r(t) 

Constant Ramp Sinusoid 

-5 

3 

10 

3t 

-10t 

0.2t-3 

100sin(t) 

-5cos(t+q) 

Where  

and q are 

constants 

Unit-step (square wave)  

t 

u(t) 

1 

u(t-td) = 1 after td 

              0 before 

td 
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Characteristics of Linear Systems 
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1.) Multiplying by constant is reflected though system. 

If input r(t) gives output x(t) then,  

K (r(t)) gives K (x(t)) 

I/O proportional  

Linear 

system 

r(t) x(t) 

K (r(t))  K (x(t)) 

2.) Superposition from circuits holds 

If input r1(t) gives y1(t) and input r2(t) gives y2(t) then 

total output  y1(t)+y2(t) 
Linear 

system 

r1(t) y1(t) 

r2(t) y2(t) 

Total output is the sum of the individual input 

responses.  From circuits, transients and sine steady-state 

Dynamic Equations Input/output 

relationships 
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Dynamics represented by integrals and derivatives with respect to time 

Electrical element:  Resistance 

i(t) R Ohms 

+ v(t) 

Defining Equations 

R

1
G       Where)t(vGi(t)

or

)t(v
R

1
)t(i

)t(iR)t(v















Electrical Element: Inductance 

iL(t) 

+ vL(t) 

L  Henrys 

 



t

0

LLL

LL

(0)id )(v
L

1
)t(i

)t(i
dt

d
L)t(v

Initial current 

at t=0 

Defining Equations 
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Dynamic Equations Input/output 

relationships 
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Electrical Element: Capacitance 

iC(t) 
C  Farads 

+ 
vC(t) 

Defining Equations 

 



t

0

CCC

CC

)0(vd )(i
C

1
)t(v

)t(v
dt

d
C)t(i Initial voltage 

at t=0 

All laws from circuit theory 

hold for the analysis of  

circuits with dynamic 

equations .  KCL, KVL, mesh 

analysis, nodal 

analysis can all be 

performed.  Substitute the 

appropriate integral or 

derivative into the mesh or  

nodal formulation.  

Dynamic Electrical Equations 
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When the current or voltage in a circuit element involves two currents or voltages in 

the derivative or integral, take the difference of the voltages or currents 

Example 8-2: Write mesh equations for the circuit below using the lumped circuit 

element representations 

5

0.5 H

0.1 H

v(t)
10

R1

R2i1(t) 

i2(t) 

0)t(v)t(v)t(v 1RL 

Loop 1 

)t(v)t(v)t(v 1RL 

)t(i
dt

d
L L

)t(i
dt

d
1.0 1

 )t(i)t(iR 211 

)t(v )t(i)t(i5 21 
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Example 8-2 Solution (1)  
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5

0.5 H

0.1 H

v(t)
10

R1

R2

Loop 2 

0)t(v)t(v)t(v 2RC1R 

 )t(i)t(i5 12 

)0(vd )(i
C

1
C

t

0

2  

)0(vd )(i
5.0

1
C

t

0

2     0)t(i10 2 

i1(t) 
i2(t) 

Example 8-2 Solution (2)  
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Mesh equations form a system of integral-differential 

equations in unknown functionsi1(t) and i2(t). 

 

  (2)    0)t(i10)0(vd )(i2)t(i)t(i5

(1)                           )t(v)t(i
dt

d
1.0)t(i)t(i5

2C

t

0

212

121







Loop 1 

Loop 2 

1/0.5=2 

Solution techniques:  convert all equations into derivatives only.  Approximate derivatives 

using mathematical methods and calculate approximate derivative values for some small  

increment in time.  Results are a list of computed points that approximate variable over a 

time interval.  Graph these points to see system response 
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Example 8-3  OP AMP Differentiators 
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Use rules of circuit analysis and ideal OP AMPs to find the input/output 

relationship for the circuit below. 

v- 

v+ 
iin 

if 

Rules of OP AMPS 

1.) No current flows into OP AMP 

2.) V- = V+  

Use nodal analysis at OP AMP inverting node. 

Sum currents at inverting input  

 iin(t)+if(t)=0  so  iin(t)=-if(t) 

iin(t)=iC(t) 

)t(v)t(vv

)t(v
dt

d
C)t(i

in)t(C

CC





Define ic(t) in terms of voltage 

f

o
f

R

)t(v)t(v
)t(i




Feedback current 

Example 8-3 Solution (2) 
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 

 

  )t(v)t(v
dt

d
CR

R

)t(v
)t(v

dt

d
C

R

)t(v)t(v
)t(v)t(v

dt

d
C

)t(i)t(i

oinf

f

o
in

f

o
in

fin




















 







Complete derivation 

V+(t)=V-(t)=0 

Positive terminal 

grounded 

Output Input 
Circuit takes derivative of input voltage 
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Mechanical System Models 
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Self-regulating tank system 

Need relationship for how level changes 

with time. Derive differential equation. 

t)QQ(V outin 

Qin>Qout  h increases 

Qin<Qout  h decreases 

Write level change in terms of tank volume 

A

V
h




A

t)QQ(

A

V
h outin 






1 

2 

1 2 

2 

Mechanical System Models 
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Self-regulating tank system – Find the average level change over 

time interval t. 

A

)QQ(

t

h

A

t)QQ(

A

V
h

outin

outin














t t 

Take limit as time 

interval goes to zero A

)QQ(

dt

dh

t

h
lim outin

0t










Write Qout in terms of  

system parameters 
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Self-Regulating Tank  
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Assume laminar flow for simplicity.   Qout determined by pressure at bottom of 

tank. 

LL

out

outL

R

hg

R

p
Q

hgp

QRp






 Combine these two 

equations and solve 

for Qout 

AR

hg

A

Q

dt

dh
       

A

R

hg
Q

dt

dh

L

inL

in











Bring all terms with 

h or derivative of h 

to one side 




























































g

AR

A

Q
h

AR

g

g

AR

dt

dh

g

AR Lin

L

LL

Self-Regulating Tank  
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























g

R
Qh

dt

dh

g

AR L
in

L

Simplified result 

Qin is independent of the liquid height. consider it along with density, area 

and flow resistance to be constant 


























g

R
G        

g

AR LL

Let  

inQGh
dt

dh


Non-homogeneous equation that determines how height of 

liquid in tank varies with time. 

Shutting off Qin finds homogeneous response of tank height 
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Mechanical Models 
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Non-Self-Regulating Tank  (Pumped Drainage)  

A

t)QQ(

A

V
h outin 






Output flow is fixed by pump flow rate. It 

is independent of the liquid height in tank. 

Define:  t = t1 - t0 

 

 h(t) = h(t1) - h(t0) 

 

dt

dh

t

h
lim      

A

)QQ(

t

h

0t

outin 











Mechanical Models 
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Non-Self-Regulating Tank  (Pumped Drainage)  

A

)QQ(

dt

dh outin 

dh 

Independent 

of h 

To solve this differential equation,  integrate 

both sides of the equation with respect to t. 

 dt QQ
A

1
dt 

dt

dh
outin

t

t

t

t

1

0

1

0

 

 

   dtQQ
A

1
h(t)

dt QQ
A

1
)t(h)h(t

1

0

1

0

t

t

outin

outin

t

t

01









Note: Right hand side is not a function of t. 

It is all a constant and can be taken out of 

the integral. 
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Non-Self-Regulating Tank  (Pumped Drainage)  
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If Qin is not a constant but changes with time, the formula below models the 

response of the tank system 

 

  )t(hdt Q)t(Q
A

1
)h(t

dt Q)t(Q
A

1
)t(h)h(t

0outin

t

t

1

outin

t

t

01

1

0

1

0








Definite integral 

from calculus 

Initial tank height 

For pumped tank with constant input and output flows, tank drains linearly with 

time based on the difference between the flow rates.  Final tank height depends 

on the pump flow rate and the time the pump operates. 

Final tank height 

Thermal Systems 

lesson8et438a.pptx 

26 

Heating characteristic of a liquid filled thermometer 

Ta 

CTm 

Tm 

Ta = fluid temperature 

Tm = measured temperature 

CTm = thermal capacitance of thermometer 

How does measured temperature change with time?  Heat 

transferred to thermometer depends on T, RT and time 

interval 

 

T

ma

R

tTT
Q


 Incremental conduction heat flow 

Definition of thermal 

capacitance 
m

Tm

Tm

m

T
C

Q
      C

T

Q








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Thermal Systems 
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Derive the thermal equation 

 

TmT

ma

Tm CR

tTT

C

Q







Divide both sides by CTm 

 

TmT

ma
m

CR

tTT
T




 Use definition of CTm from last slide 

Determine the average change in temperature for a t 

 

TmT

mamm

0t CR

TT

dt

dT

t

T
lim












 

TmT

mam

CR

TT

t

T










Take limit t  approaches 0 

Thermal Systems 
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Get all Tm and its derivatives on one side of the equation 

 

TmT

m

TmT

am

TmT

mam

CR

T

CR

T

dt

dT

CR

TT

dt

dT












TmT

a

TmT

mm

CR

T

CR

T

dt

dT







   TmT

TmT

a
TmT

TmT

mm
TmT CR

CR

T
CR

CR

T

dt

dT
CR 







am
m

TmT TT
dt

dT
CR  This is similar in form to the self-regulating tank equation. 

This is a non-homogeneous differential equation that 

describes how the measured temperature changes with time 

Move Tm to same side as derivative of Tm 
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Mechanical Systems 
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Pneumatic Control Value Position Determine how the position of a air 

actuated control value changes with time 

after pressure is applied. 

x=0 

Fa 

1/K=Cm 

v 

B=Rm 

Free body diagram- All forces must sum to zero 

M 

FRm(t) 

FI(t) 

FCm(t) 

Fa 
Fa = Pa(A) = input air force 

All forces must balance at 

each instance in time so: 

FI(t) = inertial force 

FCm(t) = spring force 

FRm(t) = viscous friction force 

Mechanical Systems- Control Valves 

lesson8et438a.pptx 
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All forces must sum to zero- Assume down is positive direction 

)t(F)t(F)t(FF

0)t(F)t(F)t(FF

CmIRma

CmIRma





M 

FRm(t) 

FI(t) 

FCm(t) 

Fa 

Need equation that relates position, x, to time 

Friction force 

dt

dx(t)
R)t(F

dt

dx(t)
 v(t)Remember       )t(vR)t(F

mRm

mRm





Viscous friction is proportional 

to velocity.  Velocity = rate of 

change of position 
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Mechanical Systems- Control Valves 
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Spring force 

Force from spring is proportional to its length, x.  Cm is spring capacitance, 

K = spring constant.  So 1/K=Cm. 

)t(xK)t(x
C

1
)t(F

m

Cm 









Inertial force 

dt

dx(t)
     v(t)

dt

dv(t)
)t(a

)t(aM)t(FI





)t(aM)t(F

dt

x(t)d

dt

dx(t)

dt

d
a(t)

I

2

2













2

2

dt

x(t)d

Control Valve Model 
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)t(F)t(F)t(FF CmIRma 

Combine individual terms 

aF
dt

dx(t)
Rm  )t(x

C

1

m











2

2

dt

x(t)d
M 

Fa is constant. Equation describes how position changes with time.  Second 

order equation, non-homogeneous. 
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Summary of Mechanical Models 
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inQGh
dt

dh


Self-Regulating Tank 


























g

R
G        

g

AR LL

Non-Self-Regulating Tank   

(Pumped Drainage)  

  )t(hdt Q)t(Q
A

1
)h(t 0outin

t

t

1

1

0

 

am
m

TmT TT
dt

dT
CR 

Heat Transfer 

)t(x
C

1

dt

dx(t)
R

dt

x(t)d
MF

m

m2

2

a 









Control Valve Position 

End Lesson 8:  Modeling Physical Systems 

With Linear Differential Equations  
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