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Abstract—Modern deep learning agents usually operate in
low-dimensional environments. They process pixel input, don’t
offer insights into their thought process, and require significant
power and computational resources. These characteristics make
them inapplicable for embedded devices. In this letter, we present
Pythia, an edge-first framework that uses latent imagination
to handle complex environments efficiently and envision future
agent states. It utilizes a VQ-VAE to reduce the high-dimensional
features into a low-dimensional space, making it ideal for modern
embedded devices. Moreover, Pythia offers human interpretable
feedback and scales well with respect to the design space. Pythia
surpassed the other state-of-art models in prediction accuracy on
both intrinsic and extrinsic metrics.

Index Terms—Latent Imagination, Edge Inference, Explainabil-
ity, Embedded Deep Learning, Self Attention

I. INTRODUCTION AND RELATED WORK

Modern Reinforcement Learning (RL) agents map states to
actions to maximize a numerical signal, i.e., the reward. In deep
RL, the model that acts upon the environment can capitalize on
the accurate representation of future states [1]. This is found
in model-based RL, where world models envision future states
of the world to solve an environment. A world model enables
an agent to plan ahead explicitly and to act by “imagining” the
long-term outcomes of its actions [2], thus adding behavioral
flexibility and offering feedback on their reasoning process [3].
Such feedback could enable explainable agents at the edge.
For example, we refer to wildfire mitigation and evacuation
planning use case. Specifically, reliable agents can be deployed
in real-world settings to plan the evacuation in case of
fire [4]. Most reinforcement learning agents cannot provide
human feedback on their actions; however, a model-based
RL agent can output an estimation of the future environment
state in pixel space, thereby enhancing interpretability. While
many works attempt to improve the prediction accuracy of
world models, they mostly require computationally expensive
planning mechanisms, thus introducing new challenges and
prohibiting their usage in more demanding tasks. They process
raw pixel features, and when coupled with a large action
space, the complexity of managing the combined state-action
space increases exponentially. These limitations render such
methods inapplicable for embedded devices, which are resource-
constrained. To that end, latent-based models could aid in
tackling the curse of dimensionality by mapping the input
image to a compressed one.
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Regarding latent-based models, authors in [5] propose an
auto-encoder consisting of fully connected layers. However,
the number of parameters grows exponentially, rendering this
approach impractical in high-dimensional pixel spaces. A
similar approach is described in [6], in which the authors
use a variational auto-encoder [7] to capture patterns in the
latent space. Towards designing agents that can operate in
complex environments, authors in [8] propose several deep
neural networks that mainly consist of LSTM cells and
convolutional layers. However, the convolutional encoder used
in their framework to extract features is efficient only in
low-dimensional environments. Authors in [9] are the first
to introduce a curiosity-driven model. Still, the environment
observations are 42 × 42 images. Authors in [10] train an
ensemble of Generative Adversarial Networks (GANs) to
estimate the agent’s future states. However, this framework
performs well in low-dimensional environment space.

In this paper, we present Pythia, an edge-first framework
based on latent imagination that can replace standard world
models and boost the accuracy of long-term future state predic-
tion in high-dimensional RL environments. The contributions
of our work are manyfold: 1 Pythia is an edge-first world
model that operates in latent space, reducing computational and
power requirements, thus boosting run-time performance. 2
Pythia provides human interpretable feedback by reconstructing
its predictions back into pixel space. 3 Pythia is tested on a
high-dimensional and complex open-world environment that
spawns many possible goals.

II. PROPOSED METHODOLOGY

Figure 1 depicts an architectural overview of Pythia, which
consists of: (i) an encoder, which transforms the input image
from pixel to latent space; (ii) a 2D conditional U-Net, which
envisions the next state in latent space; and (iii) a decoder,
which transforms the latent features back to human-interpretable
pixel features. Pythia takes as input a sequence of consecutive
captured frames and an action vector associated with the last
frame. First, Pythia encodes the input pixel elements into a
latent tensor. Then, this tensor is combined with the input action
vector to yield one final latent tensor representing Pythia’s
encoded prediction of the agent’s next state. Finally, Pythia
reconstructs the pixel matrix out of the predicted latent features.

Encoder: The first module of Pythia is the encoder module
from a Vector Quantized Variational Auto-Encoder (VQ-
VAE) [11]. An Auto-Encoder is a type of neural network that
compresses its input into a lower dimensional space, the latent
space. In Pythia, the encoder transforms the input image from
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Fig. 1. Architectural overview of Pythia. Pythia employs an encoder, a 2D conditional U-Net, and a decoder.

pixel space (Xt) into latent space (Zt). In particular, Pythia ap-
plies vector quantization, i.e., the continuous latent vectors [7]
are mapped to a finite set of vectors. Quantization suits the
model for tasks that benefit from discrete representations, such
as computer vision tasks. The encoder maps the pixel input
Xt to a sequence of discrete latent variables Zt using (i) 3
convolutional layers to extract the high-level features; and
(ii) 18 residual layers to capture the lower-level features. We
choose a low layer count to address the limited computational
resources and power constraints commonly encountered in
embedded devices. We iteratively input our encoder module
with 4 consecutive frames of size 256× 256 to yield a latent
tensor of size 16 × 64 × 64. We also apply frame skipping
because few changes happen between two neighboring frames.
Regarding the number of stacked and skipped frames, we build
upon the findings of [12] and set them equal to 4.

2D Conditional U-Net: The second module of Pythia is a
2D Conditional U-Net model [13]. In Pythia, we employ a
U-Net variant, namely 2D Conditional U-Net, to process Zt,
which represents the observation of the agent at time t in the
latent space, and predict Zt+1, which is the observation at the
next timestep. To accurately transpose the latent features Zt

into the latent features Zt+1 for time step t+ 1, we feed into
the 2D Conditional U-Net the action vector at of time step
t. Our model comprises primary blocks P to process, which
enable it to synergistically correlate tensor data (Zt) with vector
data (at). Each block P is composed of: (i) a stream of four
2D convolutional layers with group normalization and GELU
activation, which process tensor data (Zt); (ii) a stream of
a SiLU activation and a Fully Connected (FC) layer, which
transposes the vector data (at) into an embedding; (iii) a layer
that sums the output of the two streams; and (iv) a self-attention
mechanism (QKV) with 4 heads and GELU activation. Our 2D
Conditional U-Net has 4 building blocks P , equally distributed
amongst a down- and an up-sampling module.

Decoder: As aforementioned, the latent space is a com-
pressed space that aids in the reduction of the computational
requirements that Pythia projects to the embedded device.
Therefore, it is not an interpretable space. The decoder is
responsible for the human-interpretable feedback by reconstruct-
ing the dynamic latent data Zt+1 back in pixel space Xt+1.

The architecture of the decoder module is symmetric to the
architecture of the encoder in the VQ-VAE. Returning to pixel
space is an important feature of Pythia since it provides human
interpretable insight and addresses black-box architectures. Our
VQ-VAE decoder module achieves that by transforming the
latent prediction from our 2D Conditional U-Net to an image.

III. EXPERIMENTAL EVALUATION

We assess the efficiency of Pythia against three widely de-
ployed models: (i) U-Net [13], which features a contracting path
to capture pixel features and an expanding path that manipulates
these features; (ii) VAE [7], using ResNet-18 modules; and
(iii) VQ-VAE2 [14], similar to the VQ-VAE employed in Pythia.
These three models satisfy the computational constraints of
modern embedded devices and can function as world models
for model-based RL agents. We also evaluated other world
models [15], [16] that predict the next environment state based
on a sequence of frames and an agent’s action trajectory.
However, their computational requirements made them unfit
for embedded devices. Regarding the training of all models, we
utilized the dataset from the BASALT (Benchmark for Agents
that Solve Almost-Lifelike Task) competition 2022 [17]. To
the best of our knowledge, BASALT is the only dataset with
unique complexity due to the open-world setting while provid-
ing information regarding the agent’s actions, thus inspiring
research in imitation learning in open-world environments.
BASALT provides 13, 928 videos of Minecraft gameplay split
into four tasks: (i) FindCave: The agent searches for a cave
(1, 399 videos); (ii) MakeWaterfall: The agent builds a
waterfall (2, 833 videos); (iii) CreateVillageAnimalPen:
The agent builds an animal pen containing several animals
(5, 466 videos); and (iv) BuildVillageHouse: The agent
builds a new house (4, 230 videos). Each video comprises
640×360 RGB frames at 20 per second (FPS). We down-scaled
the frames to 256 × 256 while applying frame skipping and
stacking [12] to reduce the training complexity. This maintains
the vast state space while aiding the training process of our
framework. The environment properties inherit those of an
open world, which means that the entropy of the different
agent episodes is expected to be high. After pre-processing the
frames, each observation input has a size of 4 × 256 × 256.
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TABLE I
THE COMPLETE ACTION SPACE FOR EACH FRAME IN THE DATASET.

Action name Span Description

ESC Discrete(2)
Returns to the menu and then
back to the game (key ESC)

Attack Discrete(2) Start/Stop attacking/destroying (mouse 1)

Move on x-axis Discrete(4)
Forward (W), backward (S),
stand still (no key press), or
press W and S at the same time

Move on y-axis Discrete(4)
Strafe left (A), Strafe right (D),
stand still (no key press), or
press A and D at the same time

Hotbars Discrete(29) Toggle a hotbar (9 in total, keys 1-9)
Inventory Discrete(2) Toggle the inventory (key E)
Jump Discrete(2) Trigger a character jump (key SPACE)
Pick item Discrete(2) Trigger the pick action (mouse 2)
Sneak Discrete(2) Trigger the sneak/crouch action (key SHIFT)
Sprint Discrete(2) Trigger the sprint action (key CTRL)
Swap hands Discrete(2) Swapping hands of the character (key F)
Use Discrete(2) Use item/place block (mouse 3)

Camera Discrete(3602)
Rotate the camera 360◦ in
x- and y-axis (mouse movement)

Additionally, Pythia also utilizes action vectors described
in Table I. Each frame is accompanied by one such action
vector, compiling an action space of more than half a billion
possible combinations. So, combining the size of the input
(4× 256× 256) with the vast action space, Pythia, to the best
of our knowledge, is the first agent to 1 operate on such
a diverse and high-dimensional state-action space while 2
maintaining low computational overhead. To further reduce our
framework’s power and compute requirements, we leveraged
PyTorch Automatic Mixed Precision Package to quantize our
model’s parameters to 16-bit floating precision and fine-tune it
for 5 epochs using 20% of the training dataset. We selected the
Adam optimizer and configured the learning rate with StepLR
scheduler to reduce the learning rate by half after 10 epochs,
to introduce smaller updates to the weights and aid in better
convergence and model performance as training progresses.
We compiled a dataset of 50, 000 state-action pairs and trained
Pythia for 20 epochs. We maintained the criterion function
for the VQ-VAE module of Pythia and chose L2 for the 2D
Conditional U-Net. We kept the original published criteria
functions for the U-Net, the VAE, and the VQ-VAE2.

Quantitative Evaluation: We compare Pythia against: (i) U-
Net; (ii) VAE; and (iii) VQ-VAE2. For this purpose, we sampled
a sequence of consecutive images from our test set and fed it
to each model to predict the agent’s trajectory. Since our goal
is to dive as deep as possible into the agent’s future states,
we performed the following steps: (i) Initially, we fed each
model with four consecutive 256×256 frames from the original
test set (e.g., F 1

true, F 2
true, F 3

true, and F 4
true); (ii) Then, we

captured each model’s prediction (e.g., F 5
pred); (iii) We used

this frame as input (e.g., F 2
true, F 3

true, F 4
true, and F 5

pred), to get
the next prediction (e.g., F 6

pred); (iv) We repeated this process
50 times. After the first four predictions, each model operated
solely on the predicted and reconstructed frames.

Figure 2 depicts the performance of Pythia, U-Net, VAE,
and VQ-VAE2 for 50 consecutive reconstructed frames on 4
different metrics: (i) Mean Absolute Error (MAE) is a metric
that captures the model’s prediction accuracy in regression
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Fig. 2. Evaluation of Pythia, U-Net, VAE, and VQ-VAE2, on predicting future
agent states under ≈ 30, 000 unseen images. Initially, each model is fed with
4 consecutive frames. In the left column, the models envision the agent’s
state for k = 50 steps ahead. In the right column, we provide insight into
the models’ reliability in terms of error mean and standard deviation.

tasks. (ii) Mean Squared Error (MSE) is widely used in
regression problems. It behaves leniently towards low errors
and aggressively towards high errors. (iii) Peak Signal to
Noise Ratio (PSNR) is a variant of MSE. It is an extrinsic
evaluation metric and evaluates Gaussian blurriness and white
noise. Higher PSNR equals better image quality. (iv) Structural
Similarity Index Measure (SSIM) measures the similarity
concerning human perception [18]. SSIM is defined in the [0, 1]
range, and as SSIM increases, the image quality improves.

Pythia was the only model that accurately predicted the
agent’s future states. In contrast, the other models mainly
produced predictions almost identical to the input frames
without capturing any changes caused by the agent’s actions.
In particular, the accumulation of the reconstruction differences
resulted in inaccurate predictions over time. This can be seen in
the long-term predictions of U-Net, VAE, and VQ-VAE2. VAE
performed the worst, indicating that conventional convolutional
architectures are inadequate for reconstructing large inputs.
VQ-VAE2 kept reconstructing the last frame of the input (i.e.,
F 5
pred ≡ F 4

true), leading to error curves that never converge.
Accuracy: Pythia outperformed U-Net, VAE, and VQ-VAE2

with significant margins in terms of MAE. On average, Pythia
achieved a superiority of 96.1%, 2.21×, and 45.3% over U-Net,
VAE, and VQ-VAE2, respectively. This performance advantage
is higher for long-term predictions (k ≥ 30), as the improve-
ments increase to 2.19×, 2.21×, and 81%. Regarding MSE,
Pythia again surpassed U-Net, VAE, and VQ-VAE2 by 3.19×,
4.13×, and 2.1×, respectively. Extrinsic evaluation metrics
complemented these findings. Pythia achieved a 28.1%, 45.2%,
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TABLE II
RUN-TIME PERFORMANCE COMPARISON.

Module Throughput
(

frames
sec

)
Power (W )

AGX Orin AGX Orin

Pythia 18.5 47.4 15.4 7.4
U-Net 17.1 23.9 22.9 12.8
VAE 9.7 14.2 22.1 12.9

VQ-VAE2 16.8 38.2 15.1 9.2

and 11.4% improvement over U-Net, VAE, and VQ-VAE2,
respectively, in terms of PSNR. For long-term predictions,
the respective improvements increased to 39.3%, 46.1%, and
22.4%. Additionally, Pythia exhibited a higher average SSIM,
outperforming U-Net, VAE, and VQ-VAE2 by 16.5%, 39.7%,
and 9.3%, respectively. Overall, Pythia associates the action
vector with the agent observations and can thus accurately
predict the agent’s trajectory.

Reliability: Regarding MAE, Pythia and VQ-VAE2 do not
demonstrate big fluctuations, with Pythia achieving, on average,
31.7% better MAE. Pythia increases that advantage in MSE
with 52.9% better MSE on average compared to the VQ-VAE2.
The increase in performance regarding MSE is attributed to
Pythia’s ability to avoid large prediction errors. The standard
deviation is augmented regarding PSNR for all frameworks.
Still, Pythia maintains its advantage with 11% better PSNR
on average compared to VQ-VAE2. Finally, regarding SSIM,
Pythia has a standard deviation of only 0.035, thus further
validating the claim of small prediction error. On the contrary,
VQ-VAE2 has a standard deviation of 0.087, rendering it
unreliable for long-term predictions.

Runtime Evaluation: To assess Pythia’s compute and power
requirements, we utilized the NVIDIA AGX Xavier board
and the NVIDIA Orin Developer Kit. The AGX features
an 8-core ARM CPU, a 512-core Volta GPU, and 32GB
of high-speed memory, while the Orin is equipped with a
6-core ARM CPU, a 1024-core Ampere GPU, and 8GB of
high-speed memory. Table II depicts the achieved throughput
in terms of FPS and corresponding power consumption on
each board. Power consumption includes both GPU and CPU
power. Pythia achieved the highest throughput over both boards
among all the methods. This validates our design choices, such
as using a lighter residual encoder-decoder block and fewer
attention heads in our 2D Conditional U-Net. Additionally,
weight quantization contributed to Pythia’s exceptional runtime
performance, particularly in the case of the Orin board.
Regarding power consumption, Pythia achieved ∼ 15W and
7.4W on the AGX and Orin, respectively, considerably less
than U-Net and VAE. Pythia falls in second place to VQ-VAE2
when deployed on AGX due to the attention mechanisms
in our 2D Conditional U-Net, but exhibits ∼ 20% power
reduction when deployed to the Orin due to newer GPU
architecture that leverages mixed precision to deliver more
efficient performance. Overall, Pythia strikes a balance between
hardware requirements and prediction performance.

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduced Pythia, a framework that lever-
ages latent imagination to effectively handle high-dimensional
environment spaces and provide accurate predictions of future
agent states. Pythia is designed to have a low resource footprint,
enabling deployment on modern embedded devices. Pythia
primarily focuses on the observation sequence over the input
action vector for frame prediction, leading to some inaccuracies,
especially during fast movements. This issue likely stems from
the action vector’s inadequate representation. Plans include
enhancing the action vector with a higher-dimensional space.
Furthermore, Pythia’s tendency to forget previously seen objects
will be addressed by upgrading our diffusion U-Net into a
multi-modal transformer to improve memory.
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