
MapFormer: Attention-based multi-DNN Manager for
Throughout & Power Co-Optimization on Embedded Devices

Andreas Karatzas
andreas.karatzas@siu.edu

School of Electrical, Computer and Biomedical
Engineering

Southern Illinois University
Carbondale, U.S.A

Iraklis Anagnostopoulos
iraklis.anagno@siu.edu

School of Electrical, Computer and Biomedical
Engineering

Southern Illinois University
Carbondale, U.S.A

ABSTRACT
In the context of modern services that usemultiple Deep Neural Net-
works (DNNs), managing workloads on embedded devices presents
unique challenges. These devices often incorporate diverse architec-
tures, necessitating advanced management solutions to efficiently
deploy multi-DNN workloads. Traditionally, the focus has been
on improving throughput, while power optimization has received
less attention. This paper presents MapFormer, a new manager
that uses attention-based mechanisms to enhance both throughput
and power efficiency. MapFormer intelligently assigns multi-DNN
workloads to different computing components of embedded sys-
tems—CPU, GPU, and DLA—and adjusts operational frequencies to
optimize power use. Experimental results show that MapFormer
significantly improves average throughput under set power bud-
gets by 90.8%, offering a promising approach for managing complex
workloads on heterogeneous embedded systems.

KEYWORDS
Deep Neural Networks, Multi-DNN Workloads, Heterogeneous
Architectures, Edge Inference, DNN Performance Prediction, Trans-
formers, Throughput Optimization, Power Optimization
ACM Reference Format:
Andreas Karatzas and Iraklis Anagnostopoulos. 2024.MapFormer: Attention-
based multi-DNN Manager for Throughout & Power Co-Optimization on
Embedded Devices. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD ’24), October 27–31, 2024, New York, NY, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3676536.3676724

1 INTRODUCTION
Deep Neural Networks (DNNs) have become core components for
various mobile applications, such as malicious software detection,
human activity monitoring, and medical health monitoring [34].
This has increased the demand for on-device deep learning (DL). On-
device processing addresses privacy concerns and results in faster
response time by skipping server-side steps, such as data uploading.
However, on-device ML is not trivial [16]. More than half of new

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’24, October 27–31, 2024, New York, NY, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1077-3/24/10. . . $15.00
https://doi.org/10.1145/3676536.3676724

Workload

SoC

CPU

AlexNet

ResNet-50

MobileNetV2

DenseNet-201

SqueezeNet

SwinV2-S

ViT-L-16

VGG-19

Inputa

Frequencies

NVDLA

CPU f1 fk

f1 fl

f1 fm

GPU

NVDLA NVDLA ...
...
...

GPU

Workload

SoC

CPU

AlexNet

ResNet-50

MobileNetV2

DenseNet-201

SqueezeNet

SwinV2-S

ViT-L-16

VGG-19

Inputa

Frequencies

NVDLA

CPU f1 fk

f1 fl

f1 fm

GPU

NVDLA NVDLA ...
...
...

GPU

Workload

SoC

CPU

AlexNet

ResNet-50

MobileNetV2

DenseNet-201

SqueezeNet

SwinV2-S

ViT-L-16

VGG-19

Inputa

Frequencies

NVDLA

CPU f1 fk

f1 fl

f1 fm

GPU

NVDLA NVDLA ...
...
...

GPU

Design Space

NVDLA f4 AlexNet[L1]

CPU AlexNet[L2]...
GPU f4 VGG-19[L19]

f3

A
B j

k

r

s

t

h

u

C

v

x

w

D

m

n

...

i

P
o

w
e
r

E
ff

ic
ie

n
t

56 %

17 %

24 %

3 %

b

Throughput Efficient

Mapping

Throughput Power

7 3

D

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

7 3

D

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

3 2

C

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

3 2

C

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

86

B

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

86

B

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

71

A

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

71

A

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

7 3

D

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

3 2

C

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

86

B

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

71

A

S
o
ft

m
a
x

sc
o

re
s

Design Space

NVDLA f4 AlexNet[L1]

CPU AlexNet[L2]...
GPU f4 VGG-19[L19]

f3

A
B j

k

r

s

t

h

u

C

v

x

w

D

m

n

...

i

P
o

w
e
r

E
ff

ic
ie

n
t

56 %

17 %

24 %

3 %

b

Throughput Efficient

Mapping

Throughput Power

7 3

D

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

3 2

C

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

86

B

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

71

A

S
o
ft

m
a
x

sc
o

re
s

Design Space

NVDLA f4 AlexNet[L1]

CPU AlexNet[L2]...
GPU f4 VGG-19[L19]

f3

A
B j

k

r

s

t

h

u

C

v

x

w

D

m

n

...

i

P
o

w
e
r

E
ff

ic
ie

n
t

56 %

17 %

24 %

3 %

b

Throughput Efficient

Mapping

Throughput Power

7 3

D

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

3 2

C

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

86

B

S
o
ft

m
a
x

sc
o

re
s

Throughput Power

71

A

S
o
ft

m
a
x

sc
o

re
s

Figure 1: Motivational example. We explore a workload of
8 concurrently executed DNNs mapped randomly on the
NVIDIA AGX Xavier board.

module devices include a deep learning accelerator (DLA) [27].
Nonetheless, modern deep learning frameworks often utilize the
CPU, the GPU, or DLA, but not all of them synergistically [10]. This
results in a dissatisfactory user experience.

Furthermore, runtime managers for embedded devices also en-
counter the challenge of serving multi-DNN workloads. For exam-
ple, a mobile device may have to concurrently execute DL models
for mobile visual tasks, user verification, mobile web browsing,
and even help blind people discover their surroundings [19]. In
such scenarios, the challenge of efficiently managing the available
computing resources becomes crucial. One approach to address this
issue is to assign DNNs to specific processing units, such as the
CPU, embedded GPUs, or DLAs. However, these coarse-grained
allocation strategies are suboptimal and leave considerable room
for improvement [5]. To that end, a promising solution is splitting
a DNN into multiple sub-DNNs and building pipelines, where each
stage is offloaded to a different computing component [13].

Apart from throughput optimization, runtime managers must
also explore the available power settings and select the frequencies
that maximize power efficiency with minimum negative impact
regarding throughput. This dimension adds significant complexity
to the problem. To demonstrate this, we present an example of a
multi-DNN workload that comprises 8 DNNs in Figure 1. In this
example, we create 100 random multi-DNN mappings on NVIDIA
AGX Xavier board. Specifically, we: (i) randomly partition each
DNN to create sub-DNNs, (ii) randomly select a computing compo-
nent (e.g., CPU, GPU, DLAs) for each sub-DNN, and (iii) randomly
set an operating frequency for each computing component. This
compiles a space of solutions (referred to as the design space),
where we observe 4 classes of mappings: (i) mappings with both
low throughput and high power consumption (labeled as A); (ii)
mappings with high throughput but high power consumption (la-
beled as B); (iii) mappings with low throughput but low power

https://orcid.org/0000-0001-6804-135X
https://orcid.org/0000-0003-0985-3045
https://doi.org/10.1145/3676536.3676724
https://doi.org/10.1145/3676536.3676724

consumption (labeled as C); and (iv) mappings with high through-
put and low power consumption (labeled as D). To classify for high
and low throughput and high and low power consumption, we
consider each space’s extrema and quantize it into 16 bins.We ob-
serve that only 3% of the solutions yield both high throughput and
low power consumption. Hence, creating a multi-DNN manager to
find optimal partition points given a multi-DNN workload and the
corresponding computing components while also accounting for low
power consumption is very complex due to the vast design space.

In this work, we presentMapFormer, a highly efficient transfor-
mer-based multi-DNN mapping manager for heterogeneous em-
bedded devices. MapFormer performs fine-grained layer-splitting
and distributes the workload across all the available computing
components in order to boost system throughput and reduce power
consumption. Our framework achieved 90.8% higher average infer-
ences per Watt compared to the current state-of-art.
Overall, our main contributions are: 1 We propose MapFormer,
a highly accurate multi-DNN manager that utilizes fine-grain layer
partitioning to increase system throughput and minimize power
consumption. 2 We utilize latent action pruning to boost our man-
ager’s convergence and accelerate its response time. 3 To the best
of our knowledge, we are the first to support DNN layer splitting
across both the CPU, the GPU, and the DLAs.

Table 1: Comparison of state-of-art and MapFormer.
MOSAIC [8] ODMDEF [17] GA [12] OmniBoost [13] MapFormer

Throughput optimization ✓ ✓ ✓ ✓ ✔

Power efficiency ✓ - ✓ - ✔

Multi-DNN workloads - - ✓ ✓ ✔

Deep Learning
Accelerators Support - - - - ✔

Low Response Time ✓ ✓ - ✓ ✔

2 RELATEDWORK
Authors in [15] propose a reinforcement learning-based (RL) frame-
work for power and throughput optimization. However, their study
is limited to ARM big.LITTLE MPSoCs. Authors in [2] propose the
OD-RL method, which considers power and performance optimiza-
tion on many-core systems. Still, they do not consider concurrent
multi-DNN workload execution and specialized deep learning ac-
celerators. Another work for efficient resource management of mul-
ticore systems was proposed in [7]. Nonetheless, they consider an
FPGA board for their experimental case study, thus neglecting het-
erogeneous embedded systems. Similarly, authors in [18] propose
CARTAD, an RL-based framework that utilizes DVFS on multicores
for efficient scheduling. However, they target thermal optimiza-
tion rather than power and throughput co-optimization. Regarding
power-efficient DNN management on heterogeneous embedded
devices, the authors in [1] propose the ARM-CO-UP framework,
which increases throughput via sub-DNN pipelining for consecutive
input frames. However, they do not consider concurrent execution
of different DNNs. Similarly, the authors in [28] employ awide set of
computing components that operate on different precisions. How-
ever, their heuristic does not apply to conventional embedded de-
vices. Another framework that targets power-constrained platforms
is MOSAIC [8], which partitions DNNs to optimize throughput and

power consumption. However, for the case of multi-DNN work-
loads, their framework does not consider other scheduled tasks, thus
overloading the embedded GPU. ODMDEF [17] is another method
that optimizes DNNs at the edge via a composite linear regression
and k-NN cost model. However, they do not consider power con-
sumption and only optimize for throughput. The authors in [12]
utilize a genetic algorithm to distribute DNNs amongst the given
computing components. However, this method employs unstable
operators such as mutation, thus exhibiting slow convergence and
requiring retraining for every distinct workload. OmniBoost [13] is
the first framework to utilize a neural network as a cost model. How-
ever, OmniBoost does not leverage the available neural processing
unit nor considers power consumption as a point of optimization.
A qualitative comparison is presented in Table 1.

In summary, none of these works target multi-DNN throughput
and power co-optimization or efficiently capitalize on the underlying
heterogeneity via DL accelerator utilization.

3 PROBLEM FORMULATION
In this work, we target modern embedded systems that incorpo-
rate heterogeneity in terms of embedded GPUs and optimized deep
learning accelerators (DLAs). MapFormer takes as input (i) a set of
DNNs to be executed simultaneously, (ii) a collection of computing
components denoted as C (e.g., CPUs, GPUs, DLAs), (iii) and a list
of operational frequencies F 𝑐 for each component 𝑐 in C. Map-
Former searches the solution space for the mapping with the best
trade-off between average throughput and overall power consump-
tion while satisfying specific power constraints. MapFormer splits
each DNN into smaller sub-DNNs to introduce fine-grained control
over workload distribution. These sub-DNNs differ in architectural
features and, as a result, have varying computational demands.

For each DNN in a multi-DNN workload find:
• a layer splitting (i.e., sub-DNNs);
• a sub-DNN to computing componentmapping; and
• a frequency for each computing component
in order to:

1 Maximize average workload throughput T
2 Minimize overall power consumption P

such that
P ≤ P𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

4 PROPOSED FRAMEWORK
Figure 2 presents a high-level overview of the proposed method.
MapFormer consists of two primary components: (i) an estimator,
which is a transformer-based classifier [6] that evaluates a mapping
in terms of throughput and power consumption; and (ii) a Latent
Action Monte Carlo Tree Search (LA-MCTS) [33] module that ex-
plores the extensive design space efficiently, utilizing tree pruning
techniques within a predefined computational budget.

4.1 Input Formulation
As mentioned before, MapFormer takes as input: (i) a set of DNNs
to be executed simultaneously; (ii) the set of available comput-
ing components; and (iii) the supporting operational frequencies
for each one of these components. In this section, we detail how
the input sequence S is structured to represent the mapping of

Design SpaceDesign Space

Multiple DNNs

L1 L2 L3

...
Input

L1 L2 L3Input L4

L1 L2 L3

...
Input

L1 L2 L3Input L4

L1 L2 L3

...
Input

L1 L2 L3Input L4

DNN 1

DNN n

a

SoC Computing

Components

GPU

b

CPU

NVDLA NVDLANVDLA NVDLANVDLA NVDLA

Modes of Operationc

CPU

GPU

NVDLA

frequencies

frequencies

frequencies

f1 f2 f3 f4 f5

f1 f2 f3 f4

f1 f2 f3 f4 f5 f6 f7

MapFormerMapFormer

Throughput

S
o
ft

m
a
x
 s

c
o
re Power

Selection

Expansion

Evaluation

Back-

propagation

i

ii

iii

vi

2

Latent Action Monte

Carlo Tree Search
Estimator

Space

Pruning

vii

d e

NVDLA f4 DNN 1[L1]

CPU f3 DNN 1[L2]

...
GPU f4 DNN n[L4]

iv

Build Mapping

1

Add & Norm

Add & Norm

Multi-Head Attention

Feed Forward

v

Transformer

Mapping

(core placement +

frequencies)

Mapping

(core placement +

frequencies)

CPU

Core

Core

Core

Core

Core

Core

Core

Core

f3

f3

f3

f3

f5

f5

f5

f5

GPU

Cluster

Cluster

f1

f4

NVDLA

Core f7

NVDLA

Core f7

DNN 1

DNN 2

DNN n

..
.

3

Figure 2: A high-level overview of MapFormer.

DNN layers to specific cores, along with frequency settings for
each component. We achieve this through a composite embedding
module [22] that incorporates: (i) the computational profile of each
DNN layer within the workload, (ii) the processing capabilities of
each computing component of the embedded device, and (iii) the
operational frequency of all computing components. The pseudo-
code for our highly scalable embedding module is given in listing 1.
MapFormer utilizes layer partitioning to break down any DNN
model into smaller sub-DNNs, requiring a layer-level input repre-
sentation. To that end, for each layer in the workload, we apply our
customized embedding module to create a sequence of tuples, each
consisting of a layer, a computing component, and its correspond-
ing operational frequency. Unlike previous methods [13, 17], our
distributed embedding vectors are learnable, enhancing the trans-
former’s ability to estimate throughput and power consumption
more accurately. Transformers typically do not inherently under-
stand tokens’ relative or absolute positions in a sequence, so we
incorporate a sinusoidal positional encoding layer [30].
class Embedding(nn.Module):

def __init__(self, n_layers, n_ccomps, n_ops, size):
self.l_emb = nn.Embedding(n_layers, size)
self.cc_emb = nn.Embedding(n_ccomps, size)
self.op_emb = nn.Embedding(n_ops, size)
self.pos_emb = PositionalEncoding(size)

def forward(self, l, cc, op):
l_repr = self.l_emb(l) + self.pos_emb(l)
cc_repr = self.cc_emb(cc) + self.pos_emb(cc)
op_repr = self.op_emb(op) + self.pos_emb(op)
return (l_repr, cc_repr, op_repr)

Listing 1: Composite embedding module.

4.2 Estimator Module
Building on the structure of our input sequence S, we use a casual
transformer-based estimator [32] to assess any mapping M and

predict its throughput and power consumption. The choice of a
transformer-based estimator is due to its ability to capture long-
term dependencies, which is crucial for managing higher-order
multi-DNN workloads—specifically, workloads where DNNs have
a total of more than 1,000 layers to be mapped (e.g., 10 concurrent
DNNs executed on the same board as shown in Section 5). Esti-
mators from previous studies [12, 13, 17], although effective for
smaller workloads, tend to underperform with larger multi-DNN
workloads, often resulting in sub-optimal mappings. Our estimator
is specifically trained to predict throughput and power. By focusing
solely on sequence analysis rather than generation, our estimator
can incorporate context from both directions at once, significantly
enhancing the accuracy of predictions for both throughput and
power consumption.

A major differentiator of MapFormer from previous state-of-
the-art approaches is that it is designed for a classification task
rather than a regression task [23]. Specifically, our transformer-
based estimator predicts a distribution of scores for throughput and
power consumption.While estimating exact values for thesemetrics
could potentially yield better multi-DNN mappings, it also requires
significantly larger datasets to manage the imbalances in target
values [31]. For instance, mappings that achieve high throughput
scores are relatively rare compared to those with lower throughput,
creating an imbalance in the dataset that can lead to inaccurate
predictions. To address this, we define the estimator’s target as
a distribution of 𝑁 discrete classes, effectively transforming the
problem into a classification task. We divide the value space into
𝑁 equal bins in terms of sample size, which helps overcome data
imbalance. Furthermore, to manage the multi-objective nature [11]
of predicting both throughput and power consumption, we feed
the contextualized sequence outputs from the transformer encoder

Table 2: MapFormer estimator VS casual encoder-only trans-
former. We deployed our estimator and the casual encoder-
only transformer on NVIDIA AGX Xavier GPU to measure
the achieved number of inferences per second.

Module MapFormer Casual Comparison

𝑄𝐾𝑉 Heads 8 16 ↓ ×2
Atten. Layers 4 24 ↓ ×6

Embedding Dim. 64 1024 ↓ ×16
Feed-forward Size 256 4096 ↓ ×16

Parameters 270𝐾 303𝑀 ↓ ×1, 126

Inf/sec 42 3 ↑ ×14

into two separate fully connected layers, each with 𝑁 neurons
corresponding to the classes in our target distribution.

Finally, to reduce the computational demands of our estima-
tor, we use a lower-dimensional latent representation in our cus-
tom embedding layer, along with fewer multi-head attention lay-
ers and attention heads. Table 2 shows a detailed comparison of
our transformer-based estimator to a standard encoder-only trans-
former, such as BERT [6] in terms of computational workload. The
smaller parameter span also enables our estimator to converge fast
and with a small dataset, rendering MapFormer highly efficient.

4.3 LA-MCTS Module
Our estimator module primarily works as a mechanism for mapping
evaluation. To enhance this, we integrate a highly efficient space ex-
ploration module, the Latent Action-MCTS (LA-MCTS) [33]. MCTS
is a heuristic approach that efficiently navigates extensive design
spaces by iteratively interacting with its decision tree within a set
computational budget [29]. This tree holds all possible mappings
for a given design space. Although traditional MCTS effectively
minimizes a cost function through stochastic processes, it tends to
converge slowly. This slow convergence increases both the compu-
tational workload and the number of required estimator inferences.

NVDLA f4 DNN 1[L1]

CPU f3 DNN 1[L2]
...

GPU f4 DNN n[L4]

Mapping

Throughput

S
o

ft
m

a
x
 s

co
re Power

(i) Architectural

configurations

(ii) Fit 2 k-means

clusters

(iii) SVM learns

boundary

(iv) Prune design

space

Figure 3: Design space pruning via LA-MCTS [33].

To enhance the convergence rate of MCTS, we adopted LA-
MCTS, which iteratively learns to partition the design space hier-
archically. In each iteration, LA-MCTS examines specific regions
of the decision tree and applies a 𝑘-means algorithm to categorize
them into two clusters, distinguishing between promising (good)
and less promising (bad) solutions. It uses Support Vector Machines

(SVM) [26] to create a decision boundary that extrapolates the pat-
terns identified by the 𝑘-means to the broader design space. This
process helps to prioritize the regions of the design space by as-
signing a likelihood score to each potential mapping, indicating its
potential for further consideration. Figure 3 provides a high-level
overview of the iterative process of LA-MCTS and how it prunes
the design space to focus on more viable solutions.

Mapping 1

Throughput

S
o

ft
m

a
x
 s

c
o
r
e

Power
5

2

WT

WP
5 2

×

×
– 2.9

0.7WT

0.3WP

Pmax 5

Mapping 2

Throughput Power
7

6

WT

WP
7 6

×

×
– -∞

Hyper-parameters

Constraint

S
o

ft
m

a
x
 s

co
re

Figure 4: Function value for LA-MCTS.

To address the multi-objective nature of our problem, we for-
mulate a composite value function V . This function evaluates any
mapping M by calculating the weighted difference between the
predicted throughput class and the predicted power consumption
class. Additionally, to ensure the satisfaction of the power con-
straint (P𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), we incorporate a filtering step based on the
predicted power consumption class. Specifically, if a mapping is
projected to exceed the maximum allowable power consumption,
it is assigned an infinitely negative value, effectively removing it
from consideration as a viable solution. This approach is detailed
mathematically in Equation 1.

V(M) =
{
W𝑇 · T (M) −𝑤2 ·W𝑃 · P(M) if P(M) ≤ P𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

−∞ otherwise
(1)

Here, W𝑇 represents the weight assigned to throughput, T (M)
denotes the estimated throughput class for the mapping M, W𝑃 is
the weight assigned to power consumption, and P(M) indicates
the predicted power consumption. The user-defined maximum al-
lowable power consumption is denoted by P𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . Figure 4
shows an example with two mappings. In this example, the first
mapping has an estimated power consumption of 2, which is be-
low the user-defined limit (5W), allowing its value to be computed
and integrated back into the LA-MCTS tree. Conversely, the second
mapping exceeds the power limit (5W) and is consequently assigned
an infinite negative value, excluding it from viable solutions.

5 EXPERIMENTAL EVALUATION
In this section, we assess MapFormer’s performance on through-
put and power consumption trade-off efficiency by performing an
in-depth evaluation of various multi-DNN workloads on NVIDIA
Jetson AGX Xavier (JAX) [24]. The NVIDIA JAX features: (i) a
Volta GPU [3] with 512 CUDA cores and 64 Tensor cores render-
ing a performance peak of 10 TFLOPS; (ii) a Carmel CPU with ×4
ARMv8.2 dual-core clusters operating at 2.26𝐺𝐻𝑧; (iii) ×2 NVIDIA
Deep Learning Accelerators (NVDLAs); and (iv) a 32𝐺𝐵 LPDDR4x
memory. One core difference between the state-of-the-art and Map-
Former lies in the capitalization of the NVDLAs. This is a crucial

feature of this work since NVDLAs are highly optimized computing
components for DNN tasks. Specifically, some of the core NVDLA
features are: (i) Convolution Core-optimized high-performance
convolution engine; (ii) Single-point lookup engine for activation
functions; (iii) Planar averaging engine for pooling; (iv) Multi-
channel averaging engine for advanced normalization functions;
(v) Memory-to-memory transformation acceleration for tensor re-
shape and copy operations; and (vi) Accelerated path to move data
between two non-connected memory systems. The last feature
ensures fast data transfer between the NVDLAs and the SoC GPU.

MapFormer is developed using the PyTorch framework [25]. To
manage the multi-DNN workload mappings on NVIDIA JAX, we
developed a PyTorch-powered compute library that supports fine-
grainedDNNpartitioning. For the training phase of our transformer-
based estimator, we generated 2, 000 diverse workloads, each com-
prising random combinations of 1 to 10 DNNs, operating at var-
ious frequencies of computing components. Our PyTorch-based
compute library enabled us to port all the models available under
torchvision.models, creating a space of 80 widely used DNNs.
These models are categorized into several families: (i) AlexNet;
(ii) ConvNeXt; (iii) DenseNet; (iv) EfficientNet; (v) GoogLeNet;
(vi) InceptionV3; (vii) MNASNet; (viii) MaxVit; (ix) MobileNetV2;
(x) MobileNetV3; (xi) RegNet; (xii) ResNet; (xiii) ShuffleNetV2;
(xiv) SqueezeNet; (xv) SwinTransformer; (xvi) VGG; and (xvii) Vi-
sionTransformer. MapFormer is designed to be compatible with
any model defined in PyTorch. Each workload combination was
randomly allocated among the computing components of the board.
Our dataset generator assigned varying operational frequencies to
the CPU clusters, the GPU, and the two NVDLAs [36], drawing from
pools of 30 CPU frequencies, 15 GPU frequencies, and 4 NVDLA
frequencies. Additionally, each frequency pool includes an “OFF”
option, which allows our system to turn off a selected computing
component. This feature facilitates more precise Dynamic Voltage
and Frequency Scaling (DVFS) control over the board, enhancing
power management.

Additionally, in the following experiments, we employed the
following methods to evaluate MapFormer against: (i)MOSAIC [8],
a linear regression approach; (ii) ODMDEF [17], a manager with
both a linear regression and a𝑘-NN classifier in its core; (iii)GA, the
evolutionary manager proposed in [12]; and (iv) OmniBoost [13],
a framework for greedy throughput optimization of multi-DNN
workloads. We also add another variation of OmniBoost, namely
OmniBoost∗, which involves retraining the CNN estimator that
powers OmniBoost under different power thresholds.

5.1 Model Accuracy Evaluation
Current state-of-art DNN managers for heterogeneous embedded
systems, such as MOSAIC, ODMDEF, GA, and OmniBoost, heavily
depend on the accuracy of their cost models. To that end, we aim to
showcase the efficiency of our estimator module compared to the
state-of-art. We trained our estimator to classify into 16 throughput
classes and 16 power classes. We chose these numbers to achieve
an optimal balance between model accuracy and exploitation. Here,
accuracy refers to the model’s ability to correctly predict the target
throughput and power distributions, while exploitation concerns
the level of detail within those distributions. A higher number of
classes in the distribution allows for greater detail, enhancing the

Table 3: Comaprison of estimator models regarding predic-
tion accuracy across: (i) MOSAIC [8]; (ii) ODMDEF [17]; (iii)
OmniBoost [13]; and (iv) MapFormer.

Cost Model Throughput Power Consumption

MOSAIC 46.5 ↓ 42.7% 55.8% ↓ 36.5%
ODMDEF 49.7% ↓ 39.5% Not Appl.
OmniBoost 72.4% ↓ 16.8% Not Appl.
MapFormer 89.2% 92.3%

effectiveness of the exploration mechanism, in this case, LA-MCTS.
However, increasing the number of classes requires expanding the
dataset, which adds complexity to the estimator’s training. There-
fore, to enable few-shot learning [35] and quickly capture the un-
derlying data patterns, we found that a target distribution of 16
classes is enough to yield highly efficient multi-DNN mappings.

0
0.8
1.6
2.4
3.2
4

0 10 20 30 40 50 60 70 80 90 100
0
0.2
0.4
0.6
0.8
1

Lo
ss

Ac
cu
ra
cy

Epoch

Validation Loss
Throughput Accuracy

Power Accuracy

Figure 5: MapFormer’s estimator training progress.

The estimator’s accuracy strongly affects the quality of multi-
DNN mappings that our MapFormer yields. Hence, we aim to boost
its accuracy as much as possible. To that end, we trained our es-
timator for 100 epochs with 80% of our dataset using AdamW op-
timizer [21] with 0.0001 learning rate and CosineAnnealingLR
scheduler [20] for smooth approximation of the global minimum
cost during training. Figure 5 depicts our estimator’s training progress
regarding cross-entropy loss, throughput prediction accuracy, and
power consumption prediction accuracy. Our estimator has suc-
cessfully converged to a satisfactory accuracy for both tasks, i.e.,
throughput and power consumption prediction. To validate our
claim, we evaluate our estimator on the remaining and unseen test
subset. We also evaluate the prediction scores for Mosaic, ODMDEF,
and OmniBoost. Table 3 lists the prediction capability of these
frameworks compared to our MapFormer. MOSAIC is powered
by a linear regression model, and thus, its evaluation score is the
coefficient of determination of the prediction. ODMDEF is powered
by one linear regression model and a k-NN [14], which is evaluated
based on the mean accuracy of the given test data and labels. Om-
niBoost utilizes a CNN model, which solves a regression task of the
throughput value function, similar to MOSAIC. Finally, ODMDEF
and OmniBoost do not provide cost models for power consumption.
It is evident that standard cost models, such as linear regression and
k-NN, are rendered unreliable. These cost estimators fail to capture
the underlying data patterns due to the dataset’s complexity, neces-
sitating cost models with higher learning capacity. This is verified
with OmniBoost’s performance, which is nonetheless worse by a

significant 16.8% compared to our MapFormer. The GA [12] can-
not be evaluated in terms of accuracy since it is an unsupervised
learning methodology. However, we demonstrate in Section 5.3 that
the GA actually yields 28% worse throughput/power trade-off on
average compared to OmniBoost, indicating a similar behavior to
that of the ODMDEF.

There are two main reasons that negatively affect state-of-art
cost models and lead to the prediction scores presented in Table 3.
1 The number of DNNs in the given workload has been greatly
scaled up. Specifically, the only framework that has attempted
workloads of up to 5 concurrently executed DNNs is OmniBoost,
whereas the rest of the multi-DNN managers have addressed work-
loads of at most 4 concurrently executed DNNs.MapFormer ad-
dresses the increased complexity of the problem by employing a
transformer-based cost model capable of capturing data dependen-
cies across long sequences and by utilizing distributional learning
via cross-entropy criterion. This enables our framework to yield
highly efficient mappings for workloads of up to 10 concurrently
executed DNNs. 2 The pool of DNN architectures considered in
our work is greatly increased. Specifically, authors in OmniBoost
experimented with a pool of 11 widely used DNNs, while the MO-
SAIC, the ODMDEF, and the GA consider smaller pools of less than
10 DNNs. MapFormer expands the valuation pool to 80 DNNs,
thus increasing the complexity of the design space in terms of DNN
computational profile diversity. To address that challenge, our cost
model capitalizes on a 64-dimensional embedding layer that effec-
tively captures the intricate properties of the DNN layers regarding
both their computational profile and power requirements.

Overall, state-of-art cost models heavily underperform in the prob-
lem’s high-dimensional design space, thus resulting in inefficient
multi-DNN mappings. We expand our analysis in Section 5.3 and
further demonstrateMapFormer’s efficiency in finding multi-DNN
mappings with high throughput and low power consumption.

5.2 Value Function Evaluation
After establishing an accurate and efficient cost model, we focus
on evaluating the value function used in the LA-MCTS module of
MapFormer, as shown earlier in Figure 4. LA-MCTS generates a
latent space and prunes less promising candidate solutions based
on feedback from a return signal. Therefore, it is important to thor-
oughly analyze and fine-tune the hyperparameters associated with
this return signal for optimal performance. To that end, we perform
an in-depth study of the two hyper-parameters of our composite
value function: (i) the weight of the estimated throughput level,
W𝑇 ; and (ii) the weight of the estimated power consumption level,
W𝑃 . To explore these parameters efficiently, we generated a diverse
set of multi-DNN mixes by pooling different DNNs. Specifically,
we created 60 unique multi-DNN mixes, with 10 mixes each for
configurations ranging from 5 to 10 concurrently executing DNNs.
For each mix, we considered the following metrics:

1 Average throughput T (inferences per second): The aver-
age throughput is defined as T =

∑𝑁
𝑖=1 𝑡

𝑖

𝑁
, where 𝑡𝑖 = inferences

seconds
represents the throughput in inferences per second for each
DNN 𝑖 in the mix.

2 Total power consumption P (W): Defined as P = Pgpu +
Pcpu + P1dla + P2dla + Pemc, accounting for the power consumed

0
15
30
45
60
75
90

5 6 7 8 9 10

(a
)
T

(in
in
fe
re
nc
es

se
co
nd

s

) HP PB SM PR

6

12

18

24

30

5 6 7 8 9 10

(b
)
P

(in
W
at
ts
)

0
0.02
0.04
0.06
0.08
0.1
0.12

5 6 7 8 9 10

(c
)
E

(in
in
fe
re
nc
es

w
at
t

)
concurrent DNNs

Figure 6: Comparison of MapFormer’s: (i) High Performance
(HP) mode; (ii) Performance Boost (PB) mode; (iii) Standard
Mode (SM); and (iv) Power Reduce (PR) mode. We evaluate
each mode in terms of: (a) Average throughput (T); (b) To-
tal power consumption (P); and (c) Inferences per Watt (E)
across workloads of 5 up to 10 concurrently executed DNNs.

by all of the available computing components and the SoC
memory.

3 Efficiency E (inferences per Watt): To assess each multi-
DNN manager in terms of throughput and power consump-
tion trade-off, we define the efficiency metric as E =

∑𝑁
𝑖=1 𝑡

𝑖

P .

We identify 4 modes of operation for our MapFormer: (i) High
Performance (HP) mode (W𝑇 = 1.0,W𝑃 = 0.0), which considers
only the user-defined power constraint as its only objective regard-
ing power consumption and shifts its focus heavily on high through-
put; (ii) Performance Boost (PB) mode (W𝑇 = 0.7,W𝑃 = 0.3),
which prioritizes average throughput over total power consumed;
(iii) Standard Mode (SM) (W𝑇 = 0.5,W𝑃 = 0.5), which attempts to
find the best balance between throughput and power consumption;
and (iv) Power Reduce (PR) mode (W𝑇 = 0.3,W𝑃 = 0.7), which
strives to keep lower power consumption while sacrificing some
performance regarding average workload throughput. Finally, we
do not consider any power constraint in this part, i.e., the power
consumption threshold level is set equal to the maximum opera-
tional power of the board.

Figure 6(a) shows that both HP and PB modes achieve high
average throughput T . All methods gradually fall in terms of T as
we progressively stress the board with more concurrent DNNs to
be executed. However, both HP and PB modes surpass SM and PR

modes regarding mixes of 9 and 10 concurrently executing DNNs
with almost double T .

Figure 6(b) complements our analysis by analyzing the behav-
ior of MapFormer’s modes regarding total power consumption P.
It is evident that while PR mode did not perform well regarding
T , it achieves 63.9%, 47.8%, and 42.2% lower power consumption
compared to HP, PB, and SM, respectively. This strong correlation
between high throughput T and HP mode of operation, as well as
total power consumption P and PR strengthens our claim regard-
ing the accuracy and prediction skill of our estimator module and
provides valuable insight regarding the behavior of our value func-
tion. Finally, HP is almost a straight line around 30 Watts, which
is the board maximum power consumption setting, since it does
not consider power consumption minimization as an objective and
shifts all the weight to maximizing the average throughput T .

Finally, Figure 6(c) depicts the efficiency E of each mode regard-
ing throughput and power consumption trade-off. We observe that
for the case of 5 DNNs in the workload, PR mode achieves the
best throughput/power consumption trade-off. This is because the
board is not yet stressed, so there is a large margin for optimiza-
tion regarding power consumption, which MapFormer finds while
operating in PR mode. However, this efficiency is inconsistent as
the computational demands increase and more DNN tasks are con-
sidered in the workload. This results in PB and HP surpassing PR
regarding E. All modes score close E since there is a lot of power
consumed by default under such heavy order multi-DNN work-
loads. Finally, SM yields the smallest fluctuations, rendering almost
a straight line regarding E, proving its ability to efficiently balance
both throughput and power consumption.

Overall, PB mode demonstrates the highest E on average out of all
4 candidate modes of operation, and hence we will consider W𝑇 =

0.7 and W𝑃 = 0.3 for our MapFormer regarding the rest of our
experimental evaluation.

5.3 Mapping Efficiency Evaluation
In this section, we demonstrate the efficiency of our framework
against 4 other state-of-art managers, namely the MOSAIC, the
ODMDEF, the GA, OmniBoost, and OmniBoost∗. Specifically, we
leverage the tegrastats tool of NVIDIA JAX [9] and build groups
of data samples under the same powermode, thus aiding OmniBoost
to realize the space of multi-DNN workload power consumption.
We consider 3 distinct multi-DNN workload scenarios, each char-
acterized by a different level of computational complexity: (a) A
computationally lightweight workload, comprising 6 concurrently
executing DNNs, which represents a scenario with reduced com-
putational demands; (b) A moderate computational workload, con-
sisting of 8 concurrently executing DNNs, exemplifying a balanced
computational requirements; and (c) A computationally demanding
workload, involving 10 concurrently executing DNNs, embodying
a scenario with increased computational complexity.

To evaluate each manager in terms of power consumption, we
define three distinct levels of operation for NVIDIA JAX. The first
level of operation is a heavily constrained power mode, restrict-
ing the combined frequencies of the computing components to
a total power consumption of 10 Watts. We assess the ability of
each manager to account for the changes in the computing perfor-
mance of the platform’s computing components while operating

0
0.04
0.08
0.12
0.16
0.2
0.24
0.28

10 15 30Av
er
ag
e
E

(in
in
fe
re
nc
es

w
at
t

)

Mosaic
ODMDEF

GA

OmniBoost
OmniBoost∗
MapFormer

(a) Comparison of managers under 6 concurrent DNNs.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

10 15 30Av
er
ag
e
E

(in
in
fe
re
nc
es

w
at
t

) (b) Comparison of managers under 8 concurrent DNNs.

0
0.15
0.3
0.45
0.6
0.75
0.9
1.05

10 15 30Av
er
ag
e
E

(in
in
fe
re
nc
es

w
at
t

)

Watt Constraint

(c) Comparison of managers under 10 concurrent DNNs.

Figure 7: Comparison of Inferences per Watt E between Map-
Former and SOTA considering (a) low computational work-
load mixes of 6 concurrent DNNs; (b) medium computational
workload mixes of 8 concurrent DNNs; and (c) high compu-
tational workload mixes of 10 concurrent DNNs.

at lower frequencies. The second mode relaxes the power con-
sumption constraints, allowing for frequencies that result in a total
power consumption of 15 Watts. This mode enables the evaluation
of each manager’s capability to leverage the increased computing
resources to achieve higher average workload throughput without
significantly compromising power efficiency. Lastly, the third mode
assesses the performance of each manager in the absence of any
strict user-defined power constraints, focusing on their ability to
map multi-DNN workloads in order to boost average throughput
under unconstrained power conditions. Importantly, the maximum
power budget of the board is 30 Watts. For each mode, we pool
different DNNs, thus creating 30 unique multi-DNN mixes, with 10
mixes for each mode. Finally, we average the efficiency E achieved
by each manager across these mixes. This comprehensive evalua-
tion methodology includes a range of power consumption scenarios
and provides valuable insights into the robustness and efficiency of
each manager in handling different operational requirements.

Figure 7(a) depicts the performance of state-of-art managers
compared to MapFormer for the computationally lightweight sce-
nario of 6 concurrently executing DNNs. MapFormer demonstrates

higher efficiency E achieving an average improvement of 76.4%,
62.7%, 52.8%, 41.7%, and 31.1% over MOSAIC, ODMDEF, GA, Omni-
Boost, and OmniBoost∗, respectively. This significant performance
difference is due to a core feature of MapFormer; to the best of
our knowledge, MapFormer is the first framework to support layer
splitting across NVDLAs together with the platform’s CPU and
GPU. By effectively leveraging the diverse computational capabili-
ties of these components, MapFormer optimizes the execution of
multi-DNN workloads, resulting in enhanced efficiency even under
reduced computational demands.

MapFormer performs consistently under moderate computa-
tional workloads consisting of 8 concurrently executing DNNs, as
illustrated in Figure 7(b). It maintains its lead regarding mapping
efficiency E, surpassing by 81.1%, 69.6%, 67.1%, 50.4%, and 31.2% the
MOSAIC, ODMDEF, GA, OmniBoost, and OmniBoost∗, respectively.
Notably, MOSAIC, ODMDEF, and GA exhibit limited scalability
with respect to the power constraint, resulting in nearly constant E.
This observation underscores the necessity for more sophisticated
cost models to effectively manage multi-DNN workloads under
varying power constraints.

Figure 7(c) showcases the performance comparison under the
most computationally demanding scenario, involving 10 concur-
rently executing DNNs. The results highlight MapFormer’s signifi-
cant contribution to multi-DNN workload management, effectively
co-optimizing throughput and power consumption. MapFormer
shows robustness in mapping efficiency E under the heavily con-
strained 10 Watt mode, surpassing MOSAIC, ODMDEF, GA, Omni-
Boost, and OmniBoost∗ by 90.8%, 89.9%, 87.8%, 84.9%, and 78.4%,
respectively. This better performance is due to MapFormer’s highly
accurate throughput and power consumption estimator, which
leverages a transformer-based architecture to correlate computing
components, frequencies, and DNN layers in a high-dimensional
space via its composite embedding layer. In contrast, current run-
time multi-DNN managers struggle to capture long-term dependen-
cies in higher-order multi-DNN workloads due to their less capable
cost models. Even under the unconstrained power scenario of 30
Watts, MapFormer significantly outperforms other managers. This
is due to the competing managers’ underutilization of the underly-
ing hardware heterogeneity. MapFormer, on the other hand, fully
capitalizes on this heterogeneity by distributing layers across the
NVDLAs in addition to the CPU and GPU. This efficient utilization
of the platform’s computational resources enables MapFormer to
achieve superior performance and power efficiency across a wide
range of multi-DNN workloads and power constraints.

In summary, the experimental evaluation demonstratesMapFormer’s
exceptional efficiency and robustness in managing multi-DNN work-
loads, consistently outperforming state-of-the-art managers across
various computational complexities and power constraints.

5.4 Run-time Performance Evaluation
In this section, we evaluate the execution time of each manager.
MOSAIC and ODMDEF exhibit poor scalability with respect to
workload complexity, as they create a query for their cost models
for each DNN layer in the workload, resulting in a complexity of
O(N), where N is the number of layers to be mapped. Despite their
lightweight cost models, they achieve response times of ∼ 1 sec.

and ∼ 3 sec., respectively. However, as demonstrated in Section 7,
both managers find inefficient mappings in terms of throughput
and power consumption. Among the current state-of-the-art man-
agers, OmniBoost ranks second with O(1) complexity, utilizing
also MCTS with a constant exploration budget. However, to accom-
modate the increased complexity of our problem, which considers
×2 more concurrently executing DNNs in the workload compared
to the authors’ experimental evaluation, we had to significantly in-
crease the number of iterations. Consequently, OmniBoost achieves
a ∼ 60 second response time while rendering multi-DNN mappings
that are, on average, 56.4% less efficient than MapFormer in terms
of throughput and power consumption. The GA exhibits the worst
complexity, as it does not employ any cost model and requires of-
floading every chromosome in the population for each generation
to be evaluated in real-time by the NVIDIA JAX. This results in an
average response time of ∼ 2 hours for each multi-DNN workload,
considering a low population of 10 chromosomes and a similarly
low number of generations (20). Regarding MapFormer, by lever-
aging advanced latent space pruning (depicted in Figure 3), we set
the number of iterations to 100. Additionally, by utilizing flash at-
tention V2 [4] in our estimator, we avoid the quadratic complexity
associated with casual transformers. These optimizations result in
an average response time of ∼ 23 seconds for MapFormer.

In summary, MapFormer achieves the best balance between run-
time performance and efficient multi-DNN workload management
across all scenarios, rendering it the most robust and effective frame-
work among the evaluated approaches.

6 DISCUSSION & FUTUREWORK
In this paper, we presentedMapFormer, a robust framework for
multi-DNN management that effectively addresses diverse work-
load scenarios and platform power constraints. MapFormer tack-
les the high dimensionality of the design space by modeling the
problem as a classification task through distributional learning. By
leveraging the NVDLAs of the target system, MapFormer achieves a
more efficient balance between throughput and power consumption
than state-of-the-art solutions. Looking ahead, we plan to extend
our framework to support knowledge transfer, enabling the seam-
less porting of pre-trained weights from our estimator to various
embedded systems with little to no fine-tuning. This will greatly
enhance the adaptability and scalability of MapFormer across dif-
ferent hardware platforms. Furthermore, we aim to explore cache
utilization strategies to optimize throughput further and reduce
power consumption. By increasing cache utilization through DNN
operation and weight sharing, especially amongst DNNs in the
same family (e.g., VGG-11 and VGG-16), we can minimize memory
access latency and improve overall system performance. Despite
the promising avenues for future research, MapFormer already
presents a novel approach to throughput and power consumption
co-optimization. To the best of our knowledge, it is the first frame-
work capable of capitalizing on the board’s deep learning accelera-
tors together with its CPU and GPU, unlocking new possibilities for
efficient multi-DNN workload management on embedded systems.

ACKNOWLEDGMENTS
This work is supported by grant NSF CCF 2324854.

REFERENCES
[1] Ehsan Aghapour, Dolly Sapra, Andy Pimentel, and Anuj Pathania. 2024. ARM-

CO-UP: ARM CO operative U tilization of P rocessors. ACM Transactions on
Design Automation of Electronic Systems (2024).

[2] Zhuo Chen, Dimitrios Stamoulis, and Diana Marculescu. 2017. Profit: priority
and power/performance optimization for many-core systems. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 37, 10 (2017), 2064–
2075.

[3] Jack Choquette, Olivier Giroux, and Denis Foley. 2018. Volta: Performance and
programmability. Ieee Micro 38, 2 (2018), 42–52.

[4] Tri Dao. 2023. Flashattention-2: Faster attention with better parallelism and work
partitioning. arXiv preprint arXiv:2307.08691 (2023).

[5] Abhijit Das, Enrico Russo, and Maurizio Palesi. 2024. Multi-Objective Hardware-
Mapping Co-Optimisation for Multi-DNN Workloads on Chiplet-based Accelera-
tors. IEEE Trans. Comput. (2024).

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[7] Bryan Donyanavard, Tiago Mück, Amir M Rahmani, Nikil Dutt, Armin Sadighi,
Florian Maurer, and Andreas Herkersdorf. 2019. Sosa: Self-optimizing learn-
ing with self-adaptive control for hierarchical system-on-chip management. In
Proceedings of the 52nd annual IEEE/ACM international symposium on microarchi-
tecture. 685–698.

[8] Myeonggyun Han et al. 2019. Mosaic: Heterogeneity-, communication-, and
constraint-aware model slicing and execution for accurate and efficient inference.
In 2019 28th International Conference on Parallel Architectures and Compilation
Techniques (PACT). IEEE.

[9] Stephan Holly, Alexander Wendt, and Martin Lechner. 2020. Profiling energy
consumption of deep neural networks on nvidia jetson nano. In 2020 11th Inter-
national Green and Sustainable Computing Workshops (IGSC). IEEE, 1–6.

[10] Chenying Hsieh, Ardalan Amiri Sani, and Nikil Dutt. 2019. Surf: Self-aware
unified runtime framework for parallel programs on heterogeneous mobile ar-
chitectures. In 2019 IFIP/IEEE 27th International Conference on Very Large Scale
Integration (VLSI-SoC). IEEE, 136–141.

[11] Ronghang Hu and Amanpreet Singh. 2021. Unit: Multimodal multitask learning
with a unified transformer. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 1439–1449.

[12] Duseok Kang et al. 2020. Scheduling of deep learning applications onto hetero-
geneous processors in an embedded device. IEEE Access (2020).

[13] Andreas Karatzas and Iraklis Anagnostopoulos. 2023. OmniBoost: Boosting
Throughput of Heterogeneous Embedded Devices under Multi-DNN Workload.
In 2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE.

[14] Oliver Kramer and Oliver Kramer. 2013. K-nearest neighbors. Dimensionality
reduction with unsupervised nearest neighbors (2013), 13–23.

[15] Eunji Kwon, Sodam Han, Yoonho Park, Jongho Yoon, and Seokhyeong Kang.
2021. Reinforcement learning-based power management policy for mobile device
systems. IEEE Transactions on Circuits and Systems I: Regular Papers 68, 10 (2021),
4156–4169.

[16] Juhyun Lee, Nikolay Chirkov, Ekaterina Ignasheva, Yury Pisarchyk, Mogan Shieh,
Fabio Riccardi, Raman Sarokin, Andrei Kulik, and Matthias Grundmann. 2019.
On-device neural net inference with mobile gpus. arXiv preprint arXiv:1907.01989
(2019).

[17] Cheolsun Lim and Myungsun Kim. 2021. ODMDEF: on-device multi-DNN exe-
cution framework utilizing adaptive layer-allocation on general purpose cores
and accelerators. IEEE Access 9 (2021), 85403–85417.

[18] Di Liu, Shi-Gui Yang, Zhenli He, Mingxiong Zhao, and Weichen Liu. 2021. CAR-
TAD: Compiler-assisted reinforcement learning for thermal-aware task sched-
uling and dvfs on multicores. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 41, 6 (2021), 1813–1826.

[19] Google LLC. 2024. Google Lookout. https://play.google.com/store/apps/details?
id=com.google.android.apps.accessibility.reveal&hl=en_US&gl=US. Accessed:
2024-05-05.

[20] Ilya Loshchilov and Frank Hutter. 2016. Sgdr: Stochastic gradient descent with
warm restarts. arXiv preprint arXiv:1608.03983 (2016).

[21] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[22] Tomas Mikolov et al. 2013. Distributed representations of words and phrases
and their compositionality. Advances in neural information processing systems 26
(2013).

[23] Shinichi Morishita. 1998. On classification and regression. In International Con-
ference on Discovery Science. Springer, 40–57.

[24] NVIDIA. 2024. NVIDIA Jetson Xavier Series. https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-xavier-series/. Accessed:
2024-05-05.

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances

in neural information processing systems 32 (2019).
[26] Arti Patle and Deepak Singh Chouhan. 2013. SVM kernel functions for classifica-

tion. In 2013 International conference on advances in technology and engineering
(ICATE). IEEE, 1–9.

[27] Semiengineering. 2023. ML Moves From Servers To Smart Phones. https://
semiengineering.com/ml-moves-from-servers-to-smart-phones/. Accessed:
2024-05-05.

[28] Ourania Spantidi et al. 2022. Targeting DNN Inference via Efficient Utilization
of Heterogeneous Precision DNN Accelerators. IEEE Transactions on Emerging
Topics in Computing (2022).

[29] Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk.
2023. Monte Carlo tree search: A review of recent modifications and applications.
Artificial Intelligence Review 56, 3 (2023), 2497–2562.

[30] Sho Takase and Naoaki Okazaki. 2019. Positional encoding to control output
sequence length. arXiv preprint arXiv:1904.07418 (2019).

[31] Fadi Thabtah, Suhel Hammoud, Firuz Kamalov, and Amanda Gonsalves. 2020.
Data imbalance in classification: Experimental evaluation. Information Sciences
513 (2020), 429–441.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[33] Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. 2020. Learning search space
partition for black-box optimization using monte carlo tree search. Advances in
Neural Information Processing Systems 33 (2020), 19511–19522.

[34] YingchunWang, Jingyi Wang, Weizhan Zhang, Yufeng Zhan, Song Guo, Qinghua
Zheng, and Xuanyu Wang. 2022. A survey on deploying mobile deep learning
applications: A systemic and technical perspective. Digital Communications and
Networks 8, 1 (2022), 1–17.

[35] YaqingWang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing
from a few examples: A survey on few-shot learning. ACM computing surveys
(csur) 53, 3 (2020), 1–34.

[36] Gaofeng Zhou, Jianyang Zhou, and Haijun Lin. 2018. Research on NVIDIA
deep learning accelerator. In 2018 12th IEEE International Conference on Anti-
counterfeiting, Security, and Identification (ASID). IEEE, 192–195.

https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.reveal&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.reveal&hl=en_US&gl=US
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://semiengineering.com/ml-moves-from-servers-to-smart-phones/
https://semiengineering.com/ml-moves-from-servers-to-smart-phones/

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Proposed Framework
	4.1 Input Formulation
	4.2 Estimator Module
	4.3 LA-MCTS Module

	5 Experimental Evaluation
	5.1 Model Accuracy Evaluation
	5.2 Value Function Evaluation
	5.3 Mapping Efficiency Evaluation
	5.4 Run-time Performance Evaluation

	6 Discussion & Future Work
	References

