
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

Hardware-Aware DNN Compression via Diverse
Pruning and Mixed-Precision Quantization

Konstantinos Balaskas, Andreas Karatzas, Christos Sad, Kostas Siozios, Senior Member, IEEE ,
Iraklis Anagnostopoulos, Member, IEEE , Georgios Zervakis, Jörg Henkel, Fellow, IEEE

Abstract—Deep Neural Networks (DNNs) have shown significant advantages in a wide variety of domains. However, DNNs are
becoming computationally intensive and energy hungry at an exponential pace, while at the same time, there is a vast demand for
running sophisticated DNN-based services on resource constrained embedded devices. In this paper, we target energy-efficient
inference on embedded DNN accelerators. To that end, we propose an automated framework to compress DNNs in a hardware-aware
manner by jointly employing pruning and quantization. We explore, for the first time, per-layer fine- and coarse-grained pruning, in the
same DNN architecture, in addition to low bit-width mixed-precision quantization for weights and activations. Reinforcement Learning
(RL) is used to explore the associated design space and identify the pruning-quantization configuration so that the energy consumption
is minimized whilst the prediction accuracy loss is retained at acceptable levels. Using our novel composite RL agent we are able to
extract energy-efficient solutions without requiring retraining and/or fine tuning. Our extensive experimental evaluation over widely used
DNNs and the CIFAR-10/100 and ImageNet datasets demonstrates that our framework achieves 39% average energy reduction for
1.7% average accuracy loss and outperforms significantly the state-of-the-art approaches.

Index Terms—Deep Neural Networks, DNN accelerators, DNN compression, Energy efficiency, Pruning, Quantization, Reinforcement
Learning

✦

1 INTRODUCTION

During the last decade, Deep Neural Networks (DNNs)
have been established as the driving force in a wide range of
application domains, such as object detection, speech recog-
nition, virtual/augmented reality and more [1]. Modern
DNN architectures are becoming increasingly more complex
and deeper, with an ever increasing number of trainable
parameters, striving to maximize the accuracy of modern
applications. In order to keep up with the increased com-
putational complexity, hardware DNN accelerators [2] form
an integral part of computing systems. Such accelerators
integrate thousands of multiply-accumulate (MAC) units,
responsible for executing the required arithmetic opera-
tions [3]. Even though this large number of MAC units,
operating in parallel, results in improved performance, it
comes with the burden of vast energy consumption, thus

• K. Balaskas, C. Sad and K. Siozios are with the Department of Physics,
Aristotle University of Thessaloniki, Thessaloniki 54124, Greece. K. Bal-
askas is also with the Chair for Embedded Systems at Karlsruhe Institute
of Technology, Karlsruhe 76131, Germany.

• A. Karatzas and I. Anagnostopoulos are with the School of Electrical,
Computer and Biomedical Engineering, Southern Illinois University Car-
bondale, Carbondale, IL 62901 USA.

• G. Zervakis is with the Dept. of Computer Engineering & Informatics,
University of Patras, Patras 26504, Greece. This research was done when
he was with the Karlsruhe Institute of Technology.

• J. Henkel are with the Chair for Embedded Systems, Karlsruhe Institute of
Technology, Karlsruhe 76131, Germany.

Corresponding author: Konstantinos Balaskas (balaskas@kit.edu).
This work is supported in parts by grant NSF CCF 2324854, by the German
Research Foundation (DFG) project “ACCROSS” HE 2343/16-1 under the
grant 428566201 and by the E.C. Funded Program “SERRANO” under
H2020 Grant 101017168.
Manuscript received October 13, 2022, revised July 31, 2023 and November
15, 2023.

greatly affecting their integration in energy-constrained em-
bedded systems [3].

In order to balance the trade-off between accuracy and
energy consumption, several DNN compression techniques
have been exploited. Noticeably, pruning and quantization
have emerged as the most popular, mainly due to their
effectiveness and simplicity. Pruning consists of intelligently
sparsifying a dense DNN, by either removing connections
(i.e., fine-grained pruning [4]–[6]) or regular structures (i.e.,
coarse-grained pruning [7]–[9]). Quantization [10], [11] on
the other hand, lowers the arithmetic precision of operands
(i.e., weights and activations), thus reducing the energy
consumption of the DNN accelerator as well. However, in
both cases the DNN accuracy is affected and thus, methods
to mitigate the associated loss are required.

Earlier works on DNN pruning attempted to maximize
network sparsity or reduce MAC operations, using either
a fine- or coarse-grained approach. Though, exploiting
pruning at both granularities at the same time is an un-
charted territory for DNN compression. Moreover, indirect
optimization metrics (e.g., MAC count) proved suboptimal
in maximizing or even achieving latency/power gains on
hardware [12], mandating the need for hardware-aware
compression frameworks with direct platform feedback [13].
Still, combining the benefits of pruning and quantization
remains mostly unexplored, mainly due to the highly in-
creased complexity of their joint application [14]. To ad-
dress this limitation, related works attempted to combine
pruning with quantization by following a learning-based
approach (e.g., with reinforcement learning (RL)) [15] and
showed promising results. However, in such works, fine-
tuning and/or long-term retraining plays an essential role
in improving upon the DNN accuracy. Though, fine-tuning

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 2

during the optimization phase and/or retraining after-
wards, tremendously increases the required execution time,
especially when dealing with large classification datasets
(e.g., ImageNet). In addition, such approaches may be in-
feasible due to proprietary or private training data [16],
and/or when targeting resource constrained embedded de-
vices that do not support training. For example, consid-
ering the latter, assume a resource constrained embedded
system that comprises an inference DNN accelerator. De-
ploying a hardware-aware compression optimization that
requires fine-tuning/retraining would be infeasible in that
scenario. Hence, although on-device optimization would
enable hardware-aware compression and usage of private
local data, existing state-of-the-art techniques [15], [17], [18],
due to their inherent requirement for fine-tuning, cannot be
deployed on resource constrained embedded systems.

In this work, we address the aforementioned limitations
and propose a learning-based compression framework for
energy-efficient DNN inference on accelerator platforms.
To achieve this, we apply layer-wise pruning and mixed-
precision quantization. Our framework explores the full
spectrum of the joint pruning and quantization design space
in a hardware-aware manner, without any retraining/fine-
tuning (i.e., one-shot). Our approach is generic to the prun-
ing criterion, meaning that an optimal (different) pruning
algorithm is selected per layer, from a predefined set of
diverse fine- and coarse-grained pruning techniques. To
handle the huge design space, we utilize RL to automatically
prune and quantize an input DNN. We propose a novel
composite RL agent, able to learn a compression policy
which optimally balances the accuracy/energy trade-off. We
evaluate our framework over state-of-the-art image classifi-
cation models, on the CIFAR-10, CIFAR-100, and ImageNet
datasets. Our experimental results demonstrate that the
compressed DNNs generated by our framework feature
small accuracy loss and up to 57% energy gains.

Our main contributions in this work are the following:

(1) We propose an automated framework for energy-
efficient DNN inference, which applies for the first-time
one-shot compression in a learning-based manner and with
hardware-aware techniques.
(2) We boost the pruning efficiency by considering a diverse
set of pruning algorithms and combining, for the first time,
fine- with coarse-grained pruning.
(3) We propose a novel composite RL agent, able to learn
the optimal pruning and quantization profile for each layer.

The rest of the paper is organized as follows: Sec-
tion 2 provides an overview of the existing literature on
DNN compression-related topics. Section 3 serves as the
motivation for our work, by showcasing via examples the
benefits of including diverse pruning algorithms (instead of
monolithic ones) and mixed-precision quantization (instead
of uniform). In Section 4, the core idea of our work is
presented, detailing our compression technique, the imple-
mented composite RL agent and finally, our energy esti-
mation model. Section 5 presents the evaluation setup and
results, focusing on comparisons against the state of the art
and the efficacy of our exploration mechanism. Section 6
concludes this paper.

TABLE 1: Taxonomy of the differentiating characteristics between exist-
ing state-of-the-art works and our framework.

AMC [15] HAQ [17] ASQJ [24] Ours
Fine-grained Pruning - - ✓ ✓

Coarse-grained Pruning ✓ - - ✓

Mixed-Precision
Quantization - ✓ ✓ ✓

Hardware feedback ✓ ✓ - ✓

Without retraining - - - ✓

2 RELATED WORK

Several techniques for DNN pruning and quantization have
been proposed throughout the years, aiming to reduce
the memory footprint while retaining acceptable prediction
accuracy of DNNs. Earlier works on pruning [4], [5] fo-
cused on fine-grained removal of connections (i.e., weight
pruning) based on sensitivity analyses. In [19], authors con-
templated that randomly-initialized dense DNNs contain
subnetworks, able to match the accuracy of their originator
after retrained in isolation. [12] presents a hardware-aware
pruning framework to adapt a DNN to a given mobile plat-
form, driven by direct hardware metrics to meet constrained
budget requirements. In [13], fine-grained pruning is guided
by energy estimations from arbitrary hardware platforms
for energy-efficient DNN inference. In [20], a methodology
to prune fine-grained patterns inside coarse grain structures
is proposed, which, combined with compiler-level opti-
mization techniques, leads to inference speedup. However,
quantization is not considered by the above.

Focusing on post-training quantization, a three part
methodology was proposed in [21], composed of activation
clipping, per-channel bit allocation, and weight bias correc-
tion, targeting 4-bits precision. However, not all layers are
quantized. Authors in [22] duplicate channels containing
outliers and halve their outputs, decreasing, thus, the quan-
tization error and preserving network accuracy. In [23], the
quantization step and scaling factors for DNN weights are
discovered through minimization of a composite vector loss
instead of the quantization error. However, the impact on
hardware efficiency is not considered.

Improving on rule-based methods, RL has been em-
ployed to discover optimal compression solutions in a
learning-based manner [15], [17], [25]. Automatic model
compression [15] aims to provide layer-wise sparsity targets
by utilizing a Deep Deterministic Policy Gradient (DDPG)
agent in several hardware-emulating constraint scenarios.
In [17], on the other hand, an RL-based framework is pro-
posed to find layer-wise optimal mixed-precisions, based
on hardware-aware feedback from arbitrary platforms. Both
approaches consider only a single compression technique
(pruning or quantization) to limit the associated design
space explored by the RL agent.

Pruning and quantization are orthogonal to each other
and can be applied synergistically for larger energy and
memory gains. Han et. al [26] were the first to combine
weight pruning with quantization (by means of clustering
and weight sharing) and Huffman coding to further com-
press DNNs. In [24], an automated framework for jointly
pruning and quantization was based on alternating direc-

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 3

10 20 30 40 50 60

Sparsity [%]

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

T
o
p
-1

A
cc

u
ra

cy
L

o
ss

[%
]

10 20 30 40 50 60

Sparsity [%]

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60

Sparsity [%]

0.0
1.5
3.0
4.5
6.0
7.5
9.0

10
20
30
40
50
60
70
80

10
20
30
40
50
60
70
80

10
20
30
40
50
60
70
80

E
n
erg

y
G

a
in

[%
]

(a) VGG16 (b) ResNet50 (c) MobileNetV2

Fine-grain [4] → Accuracy Loss
Coarse-grain [7] → Accuracy Loss

Fine-grain [4] → Energy Gain
Coarse-grain [7] → Energy Gain

Fig. 1: Evaluation of accuracy loss (left y-axis) and energy gain (right y-axis) of different sparsity rates (x-axis) for (a) VGG16, (b) ResNet50 and (c)
MobileNetV2 on CIFAR-10. Color separates fine-grain (blue) and coarse-grain pruning (green). Shape separates between accuracy loss (triangles)
and energy gain (diamonds).

tion method of multipliers (ADMM). In [14], subnetworks
from an once-for-all network [27] (found via architectural
search) were sampled, quantized with mixed-precision and
fed to a heuristic optimization to determine optimal com-
pression rate and precision. A differentiable approach is
proposed in [28], as a joint loss function is constructed to
achieve a balance between compression techniques whilst
preserving the accuracy during training. In [29], pruning
and quantization are applied via clipping and quantizing
the remaining weights during training, in a single stage.
Similarly, [30] proposes a technique to scale each gradient
based on the weight vector position, acting as a regularizer
for pruning/quantization-aware training. A weight repre-
sentation scheme is prosed in [31], tailored for irregular
sparse matrices in a hardware friendly manner (i.e., exploit-
ing XOR gates). PQK [32] is a distillation-based pruning
framework which utilizes (previously unimportant) pruned
and quantized weights in the distillation phase, instead of
pretrained teacher models.

Some related works apply pruning and quantization
in one-shot, meaning that compression is applied without
access to training data. In [18], authors use an analytical
Langrangian-based approximation model to find layer-wise
pruning masks and quantization steps, followed by fine-
tuning. In [33], an exact mathematical model is used for
post-training one-shot compression, followed by a greedy
error minimization algorithm. BayesianBits [34] proposes
a quantization-based compression framework, which re-
lies on residual error addition to power-of-two weights
(including 0 for pruning). However, most of the above
techniques either involve differentiable optimization, thus
moving away from the post-training setting, or require fine-
tuning/retraining to recover the DNN accuracy.

Our differentiators from the state of the art are many-
fold: (i) we are the first to combine fine- and coarse-grained
pruning techniques in our exploration phase. As we will
demonstrate, the pruning granularity choice for a given
DNN is not trivial and strongly depends on the model.
(ii) We jointly prune and quantize each layer to a different
sparsity ratio and precision. (iii) We directly include hard-
ware feedback, from a DNN accelerator during the training
of the RL agent. (iv) We do not employ any retraining or
fine-tuning, during or post-exploration. A taxonomy of the
above differentiating factors is presented in Table 1.

3 DNN COMPRESSION: PRUNING AND QUANTIZA-
TION

In this work, we jointly apply pruning and quantization to
a given DNN with fixed architecture, aiming to reduce its
energy consumption, whilst maintaining high accuracy lev-
els. Pruning directly compresses the model architecture, by
removing parameters in a structured (i.e., coarse-grained) or
sparse (i.e., fine-grained) manner. In contrast, quantization
leaves the architecture intact and only reduces the precision
used for the numerical representation of its parameters. Nat-
urally, the two methods are non-overlapping and comple-
ment each other in reducing the resource budget of the tar-
geted DNN. In fact, centroid-based quantization can directly
benefit from a pruned model, as the quantization error can
be reduced when less centroids are used [26]. However, both
techniques exhibit a non-trivial trade-off between accuracy
and energy consumption. Thus, their combined application
requires a systematic approach (more details in Section 4).
The rest of this section explains and motivates the intuition
behind employing diverse pruning techniques and mixed-
precision quantization in our framework.

3.1 Diverse Set of Pruning Techniques
Here, we motivate the need for employing diverse pruning
algorithms, depending on the accuracy/energy trade-off
of each given DNN. Typically, pruning algorithms follow
either a fine-, or a coarse-grained approach, each offering
unique hardware benefits. The intuition behind fine-grained
pruning [4]–[6] derives from the observation that removing
weights with small magnitude, e.g., close to zero, marginally
affects the DNN accuracy. Considering weight-stationary
inference, energy savings derive from the reduced switch-
ing activity (and consequently, lower dynamic power) of
the arithmetic units of the accelerator, when operating on
zero inputs [3]. Contrarily, coarse-grained pruning algo-
rithms [7], [35] remove regular structures within convolu-
tional layers (e.g., filters and channels), thus significantly
reducing the model’s size and the number of operations. In
this case, the entire computation is skipped, leading to easier
exploitation of pruning and direct energy gains. Regarding
compression trade-offs, weight pruning generally achieves
much higher compression rate than structured pruning at
comparable accuracy [20]. However, fine-grained sparse

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 4

TABLE 2: The pruning algorithms considered in our work.

Algorithm Pruned Patterns
Sensitivity [5] Weights

Level [4] Weights
Splicing [6] Weights

L1-Ranked [7] Filters/Channels
L2-Ranked [7] Filters/Channels
Bernoulli [36] Filters

FM Reconstruction [35] Channels

models cannot be supported by off-the-shelf libraries [9],
and specialized hardware (e.g., sparse and zero skipping
accelerators) and software solutions are needed to take full
advantage of the sparsity and eventually improve inference.

Our framework is build upon the state-of-the-art prun-
ing algorithms of Table 2. The corresponding pruned pat-
terns of each technique are also presented. As these tech-
niques prune convolutional or fully-connected layers, we
focus on Convolutional Neural Networks (CNNs) in our
work. Even though new pruning techniques can be seam-
lessly integrated, to extend the applicability of our frame-
work to other architectures (e.g. RNNs), they are beyond the
scope of this paper. Different DNNs respond differently to
each technique and a single pruning method cannot provide
an optimal solution across a range of models. Therefore,
considering a diverse set of pruning techniques is crucial
for the compression efficiency of our framework.

As a motivation example, Figure 1 compares the ac-
curacy loss-energy savings trade-off for different sparsity
levels (i.e., percentage of zero parameters) across varying
DNNs. The pruning algorithms “Level” [4] (fine-grained)
and “L1-Ranked” [7] (coarse-grained) are examined. An
Eyeriss-based [2] DNN accelerator is considered and three
different DNNs, trained on the CIFAR-10 dataset, are used:
(a) VGG16, (b) ResNet50, and (c) MobileNetV2. As shown
in Figure 1, all three DNNs have different sensitivity to
pruning. MobileNetV2 is the most sensitive one, with L1-
Ranked dropping accuracy more than 1.5% even for just
10% sparsity. Contrarily, ResNet50 proves the most resilient
model, offering accuracy loss of less than 1% for almost
all sparsity rates and both algorithms. Overall, the coarse-
grained pruning algorithm exhibits significant accuracy loss
(especially for rates above 40%) but also higher energy
savings across all examined networks. However, this is not
always the case. Assuming a conservative accuracy loss
threshold of 1%, “Level” [4] for MobileNetV2 achieves 50%
sparsity with higher energy gain compared with the only
solution of “L1-Ranked” [7] (at 10% sparsity) that satisfies
this threshold. Based on the aforementioned observations,
the decision of a pruning technique is not trivial, it depends
on the accuracy and energy requirements and is DNN-
specific. Overall, relying on a single pruning algorithm will
deliver suboptimal accuracy/energy trade-offs.

3.2 Mixed-Precision Quantization

Quantizing a (pruned) model introduces quantization errors
to the (unpruned) parameters, causing a (further) detriment
to the DNN accuracy. Mixed-precision quantization can

0 1 2 3 4 5 6 7 8
Weight Precision

0

20

40

60

E
ne

rg
y

R
ed

uc
ti

on
[%

]

(a)

W/A Precision

0 2 4 6 8 10
Accuracy Loss [%]

0

20

40

60

E
nergy

R
eduction

[%
]

(b)

Uniform Precision
Mixed Precision

Fig. 2: (a) Energy reduction due to quantization when considering a
fixed precision 8-bit Eyeriss-based [2] DNN accelerator, for different
weight and activation precisions. x-axis represents the precision for
the weights while the radius of each circle represents the precision
of the activations. The solid line represents equal weight/activation
precision. (b) Energy-Accuracy trade-off when considering Uniform vs
Mixed per-layer precision for ResNet18 on CIFAR-10.

alleviate some of the associated accuracy loss (or allow for
further potential gains), compared to the more common,
uniform quantization. Note, mapping the entire model to
the same precision may not be optimal, since not all layers
have the same sensitivity to the introduced error [17].

To put the energy gains of mixed-precision quantization
into perspective, we assume without any loss of gener-
ality a worst-case scenario in which the targeted DNN ac-
celerator features a fixed architecture with single-precision
MAC units, e.g., [1], [2], [37]. The precision of 8 bits is
selected, since it is mainstream in embedded DNN accel-
erators (e.g., [37]), and it has been repeatedly demonstrated
that 8-bit inference delivers close-to-floating-point inference
accuracy [1]. As a result, in our worst-case scenario, compu-
tational energy gains due to mixed-precision quantization
originate only from the precision-scaled inputs and the
associated reduced toggling of the MAC units. Supplying
8-bit MAC units with lower-precision inputs (<8bit) leads
to reduced switching activity and thus lower dynamic
power [3]. Figure 2a presents the potential energy reduction
from quantizing a DNN below 8 bits, on an 8-bit DNN
accelerator. Energy gains are reported with respect to the
baseline 8-bit Eyeriss-based [2] accelerator (details regarding
the experimental setup and the energy evaluation are found
in Section 5). As shown in Figure 2a, significant energy sav-
ings can be achieved when considering low-precision (<8-
bit) weights and activations. For example, for 5-bit weights
and activations, 29% energy reduction is obtained. Finally,
Figure 2b presents an illustrative example that highlights
the significance of considering mixed-precision compared
to uniform quantization. As shown in Figure 2b, mixed-
precision solutions populate a higher Pareto front, due to
fine-grained manner in which the energy-accuracy space is
explored. It is worth mentioning that for only 0.5% accuracy
loss, mixed-precision quantization achieves 38.1% energy
gains compared to only 9.4% for uniform quantization.

Inherently, transprecision DNN accelerator architectures,
e.g., [38], [39], can potentially exploit the benefits originat-
ing from mixed-precision quantization in full, and maximize
the energy gains. Note that although we consider a single-
precision DNN accelerator, transprecision architectures can
be seamlessly used in our framework due to its hardware-

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 5

Reward LUT

Pruning
 Ratio

Quant.
Precision

Pruning
Algorithm

Composite Agent

DDPG Rainbow

Algorithm
Library

St
at

e

Reward Monitoring

Environment
Reward

Agent

Pruned and Quantized Model

Layer N: 5 bitsLayer 1: 6 bits Layer 2: 8 bits

Inference Accuracy

EnergyHardware Accelerator

Fig. 3: Abstract overview of our proposed framework.

aware nature (see Section 4.2.3). In that case higher energy
gains would also be expected.

4 PROPOSED HARDWARE-AWARE DNN COM-
PRESSION

In this section, the core of our proposed framework is
detailed. We tackle the hardware-aware search for a joint
pruning and quantization profile of a given pretrained DNN
as an RL problem. Our goal is to learn, per DNN layer,
the optimal (a) pruning ratio, (b) precision for weights and
activations, and finally, (c) pruning technique.

An abstract overview of our framework is presented
in Figure 3. Our composite agent receives the state of
each layer and outputs three actions corresponding to its
three compression directives (a-c). Accuracy and energy
consumption are measured via validation inference and a
custom energy model for the targeted hardware accelerator,
respectively. Based on those measurements, we are able to
deterministically formulate our reward in a LUT-based man-
ner. Our agent strives to maximize the accumulated reward
throughout a series of training episodes. Our framework
outputs a DNN model, pruned with various techniques
and quantized with mixed precision, which features a good
trade-off between energy consumption and accuracy.

In contrast to the state-of-the-art approaches, our frame-
work avoids any retraining or short-term fine-tuning. This
can potentially enable on-device optimization and DNN
compression, as opposed to the computationally intensive
alternative that requires fine-tuning. For example, on-device
training of the required RL-agents (see Section 4.2) is sig-
nificantly less computationally intensive than (re)training
a DNN model (e.g., ResNet50 on ImageNet). In addition,
on-device optimization preserves data locality and therefore
satisfies user privacy constraints. Finally, the applicability of

our framework is extended to scenarios where training data
are either unavailable or proprietary.

The following subsections contain detailed descriptions
of each aspect of our framework, as portrayed in Fig. 3.

4.1 Layer-wise Pruning and Quantization
Regarding our one-shot pruning and quantization tech-
nique, several considerations are detailed below. Utilizing
a combination of fine- and coarse-grained pruning tech-
niques (see Table 2) comes with the additional challenge of
resolving dependencies on more complex architectures (e.g.
ResNets). For example, pruning the last layer of a residual
block with a structured technique enforces an identical
pruning action at the shortcut layer of the same block.
Instead of simply avoiding pruning such layers, we have the
flexibility to sparsify them using fine-grained techniques,
thus further reducing the overall energy consumption with-
out causing structural mismatches. This reveals the impor-
tance of conducting layer-wise pruning (i.e., dependencies
are resolved at the first dependent layer). All layers are
subject to pruning (and quantization) in our framework.

Considering that no retraining is conducted in our
framework, the accuracy of the compressed DNNs will not
improve post-optimization. Thus, a conservative pruning
policy is expected to maintain acceptable accuracy levels,
especially in the coarse-grained case. For this reason, quan-
tization is applied upon the pruned model, as a second
step, to further reduce the energy consumption. In our
framework, we apply per-channel, asymmetric, linear, post-
training quantization with activation clipping based on a
Laplace distribution [21]. We set the same precision for both
weights and activations, in order to reduce the vast size of
our joint design space. Note that, quantization is always
applied to at least the default precision of the targeted
accelerator, i.e., 8-bit in our case.

4.2 Automated Compression with Composite RL Agent
To effectively traverse the large design space of possible
pruning and quantization configurations, we propose a
novel composite RL agent, able to learn the optimal com-
pression profile for each DNN layer. Our agent consists of
a DDPG [40] and a Rainbow [41] agent, each assigned to a
different task: the DDPG algorithm is responsible for learn-
ing the pruning ratio and quantization precision, whereas
Rainbow controls the pruning algorithm. Both agent compo-
nents are equipped with a prioritized replay buffer, to favor
experiences with higher temporal difference (TD) error, thus
improving the sampling efficiency of our framework. A
schematic overview of our RL scheme is demonstrated in
Figure 4. In the following subsections, we describe in detail
how each part of our composite agent is trained to achieve
its allocated task.

4.2.1 DDPG agent
DDPG [40] is an off-policy algorithm, equipped with an
actor-critic model. The actor is responsible for delivering
the agent’s actions (i.e., pruning ratio and quantization
precision), whereas the critic is a Q-value network that
determines the quality of the actor’s actions, based on the
gathered reward. We enhance the learning procedure with

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 6

target critic and actor networks, and the use of truncated
normal distribution for noise exploration purposes. The
DDPG algorithm operates over a continuous, multidimen-
sional action space, which in our case is a two-dimensional
vector within the range of [0, 1] that corresponds to the
pruning ratio and selected precision (i.e., the outputs of the
actor). Using a continuous space allows for finer control
over both variables. In order to translate the continuous
actions to precision (i.e., bits), a simple linear mapping
is required, followed by rounding to the nearest integer.
The environment state, which serves as the observation for
the agent, is a 13-dimensional vector st and represents the
full embedding of layer t. In other words, the state vector
mirrors every characteristic of each layer, so that the actor
can act based on a rich, fully-descriptive set of features. In
the case of a convolutional layer:

st = {t, 0, Co, Cin, hin, win, str, k, Et, Pt,Mt, E
red
t , at−1},

(1)

where t is the layer index (equivalent to the agent step),
Cin × hin × win is the size of the input feature maps (FM),
Co are the output FM channels, k is the kernel size, str
is the stride, Et is the energy consumption of (unpruned
and non-quantized) layer t, Pt is the number of its weight
parameters (linked with pruning effects), Mt is its memory
size (i.e., Pt × qb, where qb = 32 precision bits for floating
point weights, linked with quantization effects), Ered

t is the
reduced energy of layer t caused by actions at and at−1 are
the actions for layer t− 1 (i.e., at step t− 1). Similarly to (1),
for a fully connected layer:

st = {t, 1,M,N, hin, win, 0, 1, Et, Pt, E
red
t , at−1}, (2)

where N ×M is the shape of the weight tensor.

4.2.2 Rainbow agent
We implement a Rainbow agent [41] to learn the optimal
pruning technique for each layer of the input DNN. Al-
though, both the pruning ratio and quantization precision
can be easily represented as continuous variables, pruning
algorithms can only be interpreted as an array of indexes.
Incrementing or decrementing indexes does not convey any
physical information (importance) and is therefore hard to
optimize with the continuous action space of DDPG. For this
purpose, we leverage the inherently discrete action space of
the Rainbow algorithm. Rainbow improves upon Double Q-
Learning with a dueling model architecture [42], i.e., a value
and advantage subnetworks, which introduce attention to
the selected actions. The injection of noise in the last layer
of both subnetworks enriches the agent’s robustness to per-
turbed observations from its environment. Finally, instead
of using the absolute values of the outputs from the dueling
architecture, an estimation of their distribution is obtained,
which boosts the agent’s overall efficiency.

Rainbow and DDPG are directly connected, forming our
composite RL agent. The input (i.e., state vector) to the
Rainbow model is the the output of the feature extractor of
our compression policy, i.e. the output of the hidden layer
of the DDPG actor network (see Figure 4). At each step,
after DDPG is updated, the outputs from the hidden layer of
its actor network feed the Rainbow model as inputs. These

State

Reward

DDPG
Rainbow

Sparsity

Precision

Algorithm

Teacher
Critic

Q

Actor Critic

Reward Monitoring

Fig. 4: Overview of our composite RL scheme, including our two
agents (DDPG and Rainbow). The reward monitoring component,
which activates the Rainbow agent, and the teacher critic model which
enriches the DDPG update, are also depicted.

inputs/features are used to produce the action: a discrete
pruning technique. Then, the Rainbow subnetworks (value
and advantage) are allowed to update. This feedback signifi-
cantly helps the Rainbow model in learning abstract features
from the DNN, without any computational overhead.

Importantly, the DDPG needs to (start to) learn the
pruning sensitivity of each layer before Rainbow appoints
the optimal pruning algorithm. Our aim is for Rainbow
to safely extract patterns from its input, which would be
suboptimal if the input features were rapidly changing (i.e.,
at the initial phase of DDPG training). Thus, we freeze the
training process of Rainbow, until the DDPG feature extrac-
tor has shown signs of improvement (i.e., increased moving
average reward). Random pruning techniques (from Table 2)
are sampled at this point to remove any bias towards
any specific technique. We implement a light-weight re-
ward monitoring scheme, which keeps Rainbow stagnant
throughout the primary exploratory period of our opti-
mization. As soon as the reward/episode curve reflects a
consistent improvement, the Rainbow agent is unlocked and
allowed to control the selection of pruning techniques using
the already mature features of the DDPG actor backbone.
The loss of the Rainbow agent does not back-propagate, to
avoid any bias overestimation pitfalls. Note, rewards are
fed to the agent at every step, since the Rainbow model
requires an update before each compression action. Overall,
the Rainbow agent learns to associate abstract features of
pruning and quantization (i.e., from the last layer of the
DDPG actor’s feature extractor) with the best fitted tech-
nique for these features.

4.2.3 Hardware-aware reward

We continue with the description of our reward mechanism,
shared between both parts of our composite agent (i.e.,
DDPG and Rainbow). We formulate our reward as a Look-
up Table (LUT), indexed by accuracy and energy consump-
tion measurements. Accuracy is evaluated by running in-
ference on a validation subset. Simultaneously, we estimate
the energy consumption of the pruned and quantized DNN,
using a custom energy model (see Section 4.3). Energy mea-

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 7

10090 80 70 60 50 40 30 20 10 0

Accuracy Loss [%]

0

10

20

30

40

50

60

70

80

90

100

E
n
e
rg

y
G

a
in

[%
]

−1.0

−0.5

0.0

0.5

1.0

Fig. 5: Heatmap of our LUT-based reward. x-axis contains the accuracy
loss and y-axis the energy gain. The reward is significantly higher for
solutions of accuracy loss < 10%, which is a realistic target region of
our framework. For readability, the heatmap is plotted at 25% of its
actual resolution.

surements serve as direct feedback from the environment
to the agent, as part of the reward. Note that, although we
target energy efficiency in our work, any other hardware
metric (e.g., latency) is seamlessly supported since it can be
measured in an identical manner. Naively formulating our
reward as an analytical notation comprising the accuracy
and energy consumption (e.g., a linear combination of the
two measurements), could lead to DNNs of significant ac-
curacy loss, albeit high energy gains. Since our framework
does not retrain the final compressed model, to improve
its prediction capabilities, we are realistically interested
in a limited, high-accuracy region in the Pareto curve of
the possible accuracy-energy trade-offs. Thus, we create a
LUT of size 40 × 40, containing a satisfactory number of
accuracy loss and energy gain combinations (w.r.t. the dense
model), heavily favoring, intentionally, solutions with small
accuracy loss. A heatmap of our custom reward function
is illustrated in Figure 5. Note, a sub-sampled version of
our reward function is depicted, at 25% of its actual reso-
lution, for readability purposes. Our LUT-based reward is
significantly higher when the accuracy loss is less than 10%.
Hence, the RL agents are strongly incentivized to prioritize
actions that lead to minimal accuracy loss. Similarly, the
reward corresponding to minimal energy gains (< 5%) but
also small accuracy loss (<5%), is a small negative number,
to slightly discourage RL agents from outputting close-to-
zero compression actions.

4.3 Energy Model
Here, we describe our custom energy model to estimate the
energy consumption of the targeted accelerator platform
and for a given pruned and quantized DNN workload.
We operate on a layer-wise fashion to extract an energy
measurement for each DNN layer. Each measurement com-
prises two parts: the energy consumption related to memory
accesses and data movement (Emem) and the one related
to MAC computations (Ecomp). Similar to [13], Ecomp is
approximated as the number of MAC operations weighed
by the energy cost of a single computation. Emem on the
other hand is calculated by extracting the total number
of accesses to the accelerator’s memory, multiplied by the
energy cost of a single memory access. We enhance this
model by applying a multiplicative factor to both terms,

which conveys the necessary information about the effects
of pruning and quantization to the specific layer. These
factors (Rx) are appropriately named reduction coefficients,
as their purpose is to apply a reduction to the energy
consumption due to compression. Thus, the total energy
(Etotal) of a DNN model with L layers is given as follows:

Etotal =
L∑

l=0

El =
L∑

l=0

(El
mem + El

comp), (3)

Emem = #acc ∗ emem ∗Rmem, (4)
Ecomp = #comp ∗ ecomp ∗ (Rpruned +Runpruned), (5)

where emem and ecomp are the cost values for a single
memory access and MAC computation, respectively; Rmem,
Rpruned and Runpruned are the reduction coefficients for the
memory accesses, and for computations with pruned and
unpruned parameters, respectively. Note, the coefficients are
non-unit and valued in the closed set of [0, 1], such that an
energy reduction w.r.t the baseline is guaranteed. Below, we
analyze the calculation of each term in the equations above.

Both the number of MAC operations (#comp) and mem-
ory accesses (#acc) are automatically provided by an open
source tool1, namely NN-Dataflow. Inspired by works re-
lated to efficient mapping of DNNs to hardware plat-
forms [43], [44], NN-Dataflow offers a fast exploration
mechanism upon diverse dataflow scheduling choices in-
cluding array mapping, loop blocking and reordering, and
(coarse-grained) parallel processing within and across lay-
ers. Noticeably, the dataflow optimization techniques for
intra-layer parallelism and inter-layer pipelining presented
in Tangram [44] are incorporated. Such a direct mapping
and measurement helps in capturing all unique features of
the accelerator, leading to an accurate modeling of energy-
aware inference. Finally, the single cost values in (4),(5) can
be estimated by measuring the cost of running a single MAC
(floating-point) operation on the accelerator, as well as the
energy consumed by one access to memory.

Reduction coefficients incorporate the effect of pruning
and quantization on each comprising term of (3), and their
values depend on the selected pruning algorithm and pre-
cision. Quantization is capable of reducing the computa-
tional cost of MAC operation, due to the lower precision,
for all unpruned parameters. To calculate that effect, we
evaluate the energy consumption of the 8-bit MAC units
when operating over reduced-precision multiplicands (i.e.,
< 8-bit weights and activations). To that end, we design
and synthesize an 8-bit MAC circuit that consists of an
8-bit multiplier and a 32-bit adder to avoid accumulation
overflow. Gate-level timing simulations with realistic inputs
obtained from quantized networks at different precisions are
performed. All the possible combinations for the precision
of the multiplicands (i.e., ≤ 8bit) are examined, and for
each combination we run a separate simulation to obtain
the respective switching activity of the MAC unit. Finally,
the obtained switching activities are used to measure the
power consumption of the MAC unit for each precision
combination. In this way, we are able to derive the com-
putational power reduction ratio RQ between the baseline
(i.e., 8-bit precision for weights and activations) and any

1. github.com/stanford-mast/nn dataflow

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 8

given quantization codebook (namely, QW and QA bits for
weights and activations, respectively):

RQ =
PQW /QA

P8/8
, RQ ∈ [0, 1]. (6)

Pruning effects to energy consumption differ according
to the selected pruning algorithm. Fine-grained pruning
allows for moderate reduction in the computation-related
energy, whilst demanding the same amount of memory
accesses as the baseline, since parameters set to zero still
need to be fetched from memory to calculate intermediate
results for sparse matrix arithmetic operations. Additionally,
computations with pruned parameters (i.e., set to 0) have a
non-zero energy cost. The intuition behind this statement is
that when multiplying by 0, the power consumption (and
thus energy) of the MAC unit is expected to be significantly
reduced but it will not be zero, due to the static power
consumption as well as any toggling activity of the 32-
bit adder. As mentioned in Section 3, specialized hardware
(e.g., sparse and zero skipping accelerators) and software
solutions are needed to take full advantage of the induced
sparsity by fine-grained pruning. To calculate this non-zero
quantity, we evaluate the energy consumption of the MAC
unit when one of the multiplicands is 0 (e.g., as in fine-
pruning), similarly to the aforementioned power estimation
technique for quantization. In this case, the other multi-
plicand and the partial sum are free to toggle. Thus, we
come up with a “penalty” term PFG which represents the
average energy consumption of computations with pruned
parameters compared to unpruned ones, when using a fine-
grained pruning algorithm. According to our calculations,
this value is set at 0.2, i.e., the energy used in MAC
operations with weights set to 0 is reduced by 80% com-
pared to computations with unpruned parameters. Putting
everything together, in the case of fine-grained pruning, the
coefficients from (3),(4),(5) take the following form:

Rmem = 1,

Rpruned = PFG ∗ S,
Runpruned = (1− S) ∗RQ,

(7)

where S symbolizes the fine-grained sparsity (S ∈ [0, 1]). (7)
shows that fine-grained algorithms may lead to moderate
energy gains, due to the “penalized” computational energy
consumed of unpruned parameters.

Coarse-grained pruning algorithms provide a straight-
forward reduction in both the necessary MAC computa-
tions and accesses to memory, directly proportional to the
induced sparsity. Their structured nature allows for entire
blocks (i.e., filters/channels) to be removed and conse-
quently for parts of matrix multiplication operations to be
skipped. The corresponding patterns in data movement are
analogously simplified. Summarizing, such pruning algo-
rithms correspond to the following reduction coefficients:

Rmem = 1− S,

Rpruned = 0,

Runpruned = (1− S) ∗RQ.

(8)

The above mathematical formulation of our energy model
allows for quick energy estimations during RL training.

G
lo

ba
l S

R
A

M
 B

uf
fe

r

RegFile

RegFile RegFile

RegFile

PE array

RegFileRegFile

RegFile

Fig. 6: Schematic overview of the Eyeriss-based [2] targeted DNN
accelerator for our evaluation.

5 RESULTS AND ANALYSIS

5.1 Experimental Setup

In this section we assess the efficiency of our proposed
framework by performing an in-depth evaluation over
nine state-of-the-art DNNs and three image classification
datasets. For our analysis we consider: VGG11, VGG13,
and ResNet18 trained on CIFAR-10, VGG16, ResNet34, and
MobileNetV2 trained on CIFAR-100, and VGG19, ResNet50,
and SqueezeNet trained on ImageNet. Our RL agents are
trained for 1100 episodes (first 100 constitute the warm-up),
sampling 64 experiences per update from the prioritized
replay buffer, whose size is set at 1000 experiences. Both
actor and critic DDPG networks are built with 3 hidden
fully-connected layers of 300 neurons and are trained with
learning rates of 10−3 and 10−4, respectively. Noise for the
truncated normal distribution is initialized at 0.6 and after
the warm-up is decayed with a factor of 0.99 after each
episode. A discount factor of 1 is used. The (numerous)
hyperparameters required to configure the Rainbow part of
our agent are directly taken from [41].

During our optimization, rewards are computed using
a 10% subset of the validation set, regarding the accuracy
component of the LUT. As a target hardware platform,
we consider an 8-bit Eyeriss-based DNN accelerator [2],
which is a tile-based architecture (see Fig. 6). Specifically,
we consider a 64 × 64 2D array of processing elements
(PEs) for each tile, with a local register file of 64 bytes in
each PE, and a shared global SRAM buffer of 32KB, similar
to [44]. A standard 2D hierarchical memory architecture is
utilized (i.e., memory channels are assumed to be on the
four corners of the chip) and a total DRAM bandwidth of
3.2Gbps. Energy measurements from the hardware acceler-
ator are extracted using the custom energy model described
in Section 4.3. The MAC units are designed in Verilog-
RTL, synthesized with zero-slack, and mapped to the 7nm
ASAP7 library. The optimized arithmetic components of the
commercial Synopys DesignWare library are used for the
adder and multiplier. Synopsys Design Compiler and the
compile_ultra command are used for circuit synthesis,
QuestaSim is used for gate-level timing simulations (and
obtaining the respective switching activities), and Synopsys
Primetime for measuring the power consumption. Finally,

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 9

0

20

40

E
ne

rg
y

Sa
vi

ng
s

[%
]

(a) Ours

0

20

40

E
ne

rg
y

Sa
vi

ng
s

[%
]

(b) AMC [15]

No solution
found

0

20

40

E
ne

rg
y

Sa
vi

ng
s

[%
]

(c) HAQ [17]

No solution
found

0

20

40

E
ne

rg
y

Sa
vi

ng
s

[%
]

(d) ASQJ [24]

No solution
found

VGG11

VGG13

ResN
et1

8

VGG16

Mob
ile

NetV
2

ResN
et3

4

ResN
et5

0

VGG19

Sq
ue

eze
Net

0

20

40

E
ne

rg
y

Sa
vi

ng
s

[%
]

(e) OPQ [18]

No solution
found

0

2

4

A
ccuracy

Loss
[%

]

0

2

4

A
ccuracy

Loss
[%

]

0

2

4

A
ccuracy

Loss
[%

]

0

2

4
A

ccuracy
Loss

[%
]

0

2

4

A
ccuracy

Loss
[%

]

Energy Reduction Top1 Accuracy Loss

Fig. 7: Energy gain vs accuracy loss evaluation for (a) our framework,
(b) AMC [15], (c) HAQ [17], (d) ASQJ [24] and (e) OPQ [18]. Without
retraining (or with only a single epoch for OPQ), the state of the art
technique could not converge to a compressed DNN of acceptable
accuracy loss (<10%) for the ImageNet dataset.

the top-1 classification accuracy of the obtained compressed
DNN is evaluated on the test set.

5.2 Accuracy/Energy Trade-off
To evaluate the efficiency of our framework and put the
delivered energy-accuracy trade-off into perspective, we
compare the DNNs produced by our framework against
the following state-of-the art frameworks: (i) AMC [15]
trains a DDPG agent to apply per-layer channel prun-
ing, (ii) HAQ [17] applies mixed-precision quantization to
weights and activations, also utilizing the DDPG algo-
rithm, (iii) ASQJ [24] jointly prunes and quantizes DNN
weights, using the ADMM technique, and (iv) OPQ [18] ap-
plies one-shot pruning and quantization using an analytical

model on pretrained DNN weights. We select the afore-
mentioned approaches to cover a wide spectrum of com-
parisons: AMC and HAQ serve as standalone approaches,
applying solely pruning and quantization, respectively, in
a learning-based manner. They also constitute hardware-
aware approaches (see Table 1). Contrarily, both ASQJ and
OPQ tackle the joint pruning/quantization design space,
the former using ADMM and the latter with an analytical
model. Additionally, the first three approaches attempt to
learn the compression profile via parameter update (i.e., RL
or ADMM), whereas OPQ approximates the error minimiza-
tion function via the Langrange multiplier. Finally, OPQ is
an one-shot method, i.e., no access to the training data is
required to calculate the pruning masks or the quantization
codebook. All accuracy loss and energy reduction measure-
ments below are reported w.r.t. the baseline DNN (i.e., dense
DNN quantized at 8 bits). Since AMC [15] uses floating-
point inference, we quantize the resulting pruned DNN to
8 bits. The same quantization algorithm that is used in our
framework is also used to quantize the baseline and AMC.

To the best of our knowledge our framework is the
first learning-based and hardware-aware one that does not
require fine-turning or retraining. To be clear, one-shot
compression via joint pruning and quantization has been
proposed in prior work [18], [33], [34]. Even outside the
one-shot environment, fine-tuning steps (as well as long-
term retraining) are often used by related works [15], [17],
[24] in the exploration phase. Retraining is orthogonal with
any compression framework and acts as a standalone im-
provement technique to significantly recover accuracy loss
without also affecting the energy efficiency of compressed
model. Thus, to ensure a fair comparison, we do not conduct
long-term retraining on any compressed DNN. Neverthe-
less, we allow for fine-tuning to be applied between the
exploration steps of AMC [15], HAQ [17] and ASQJ [24].
For OPQ [18], a few fine-tuning steps are used post-
compression. Although this gives a significant advantage to
the state of the art, it enables us to implement the respective
algorithms without tampering with their optimization flow.

Figure 7 presents our evaluation in terms of the accuracy
loss vs energy gain trade-off of the compressed DNNs
obtained from our framework, as well as the related works.
The derived trade-offs and comparisons are analyzed in the
following subsections.

5.2.1 Evaluation of our Framework
As shown in Figure 7(a), our framework delivers high
energy savings and small accuracy loss across all DNNs
and datasets. A conservative threshold of < 2% top-1 ac-
curacy loss was imposed on our compressed DNNs for
the CIFAR-10 and CIFAR-100 datasets. This is relaxed to
< 5% for the more challenging classification task on the
ImageNet dataset. On average, our framework achieves
53.23%, 44.33%, and 19.7% energy reduction for the CIFAR-
10, CIFAR-100, and ImageNet DNNs, respectively. The cor-
responding average top-1 accuracy loss is 0.93%, 1.38% and
2.92%, on average. As expected, the compression-induced
reduction on energy consumption is at its peak for the
easier classification task, on the CIFAR-10 dataset. Error
tolerance of these models stems from the fact that a sub-
stantial amount of parameters may be redundant, or quan-

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 10

tization errors can be masked from the last layer’s softmax
probabilities. Our agent exploits that fact, as the accuracy
loss is incorporated in its reward, and strives to compress
such models more aggressively, driving the energy gains
to high levels. On a similar but lower scale, the same can
be said for the CIFAR-100 dataset. Interestingly, the lowest
obtained energy gains are observed for the MobileNetV2
architecture, which includes lightweight convolution oper-
ations (e.g., depth-wise convolution). Such operations are
constrained by design, and do not make good candidates
for compressing their parameters. We expect that a DNN
architecture of moderate depth but convolution operations
of high volume would be ideal for exploiting the benefits of
our framework to their maximum. A great example is the
ResNet34 architecture, which even though is trained on the
CIFAR-100 dataset, achieves an impressive 51.07% energy
gain with only 1.4% top-1 accuracy loss.

Understandably, as the dataset/task becomes more
complex/challenging (and since we do not use fine-
tune/retraining) the obtained energy savings diminish.
Though, it is noteworthy that even for ImageNet, where
energy gains are limited without retraining, our framework
still manages to produce models of considerable energy
savings within the strict accuracy bounds (< 5%). For
example, for ResNet50 on ImageNet, we achieve 18.47%
energy reduction and only 1.75% accuracy loss. Similarly,
for VGG19 on ImageNet, the energy savings increase to
28.75% while the accuracy loss is 2.35%. Even in the case of
SqueezeNet, which is a compressed architecture by design,
we achieve 11.88% energy gain for 4.66% accuracy loss.
Again, our framework delivers such energy gains by effi-
ciently searching the joint pruning-quantization space and
without requiring fine-tuning or retraining.

5.2.2 Comparison against Standalone Approaches
In this section, we compare our framework against the
standalone pruning/quantization state-of-the-art method-
ologies: AMC [15] and HAQ [17], in Figure 7(b) and (c),
respectively. As mentioned above, both approaches involve
RL-based optimization for either the per-layer pruning ra-
tion (AMC) or precision for weights and activations (HAQ),
coupled with hardware-aware reward. AMC reaches up to
49.9% energy gain for ResNet18 on CIFAR-10 with 1.6% ac-
curacy loss. On average, AMC achieves 46.32% and 28.97%
energy reduction, respectively, for the CIFAR-10 and CIFAR-
100 DNNs, while the corresponding accuracy loss is 1.44%
and 1.39%. In comparison, our work achieves 0.51% and
0.01% lower top-1 loss with 6.91% and 15.36% higher
energy gain, on average. Quantized DNNs by HAQ feature
31.64% and 30.32% average energy reduction and average
top-1 accuracy loss of 2.36% and 5.3%, for CIFAR-10 and
CIFAR-100. Only a single use-case (VGG11 on CIFAR-10)
adheres to the 2% accuracy loss threshold set by our frame-
work. Interestingly, HAQ achieves semi-constant (~30%)
energy gains over all the examined scenarios, but with the
highest accuracy loss across all techniques. This highlights
HAQ’s difficulty in detecting the sensitivity of each model to
quantization, and its reliance on post-optimization retrain-
ing to reduce the accuracy loss below more conservative
thresholds (e.g., 1%). Note, HAQ could not converge to a
solution of acceptable accuracy drop (< 10%) for ResNet34

on CIFAR-100. Similar to our framework, as the dataset
complexity increases, the energy savings also decrease.

Our framework, outperforms the two related method-
ologies for all the examined DNNs except for AMC on
MobileNetV2. This inherently compressed architecture is
amenable to structured pruning due to the regular structure
of depthwise separable convolutions. In contrast, weight
pruning is considerably less impactful, as only a few redun-
dant parameters exist. Hence, only conservative pruning
can be applied without greatly hurting prediction accu-
racy, which leads to reduced energy efficiency. As a result,
our framework achieves 40% energy reduction while AMC
achieves 47% energy savings. However, this difference is
specific to the structure of MobileNetV2 and subject to
the fine-tuning used by AMC to recover the accuracy loss,
enabling AMC to further boost the applied pruning.

It must be pointed out that neither AMC nor HAQ were
able to identify a solution with less than 10% accuracy loss
for ImageNet. Its challenging nature and the high complex-
ity of the associated DNNs, make it significantly more diffi-
cult to apply pruning or quantization and still maintain the
desired accuracy, without long-term retraining. This further
highlights the significance of all the aspects of our work,
i.e., considering many pruning algorithms and intelligently
selecting the optimal one, applying diverse pruning and
mixed-precision quantization in a hardware-aware manner
and guiding the RL exploration to high accuracy solutions
via our flexible LUT-based reward.

5.2.3 Comparison against Joint Approaches
Finally, we compare against the joint pruning/quantization
state-of-the-art approaches. Figures 7(d) and (e) present
the top-1 accuracy loss and energy gain of ASQJ [24] and
OPQ [18], respectively. Note, ASQJ conducts an ADMM-
based optimization where each compression stage is repre-
sented by a different variable update, whereas OPQ derives
the pruning masks and quantization steps in one-shot us-
ing a Langrangian-based analytical model. To have a fair
comparison and achieve competitive results, we include 5
retraining epochs for OPQ, after the one-shot calculations,
for reasons mentioned in Section 5.2. For ImageNet, this was
reduced to 1 epoch.

On average, ASQJ achieves 34.07% and 16.45% energy
savings and top-1 accuracy loss of 1.66% and 1.4%, for the
CIFAR-10 and CIFAR-100 datasets, respectively. Notice, that
the energy gains obtained by ASQJ are smaller compared to
both AMC and our framework. This is expected, as fine-
grained pruning (employed by ASQJ) reduces energy in
a less impactful way than coarse-grained pruning (used
in both our framework and AMC). Pruned and quantized
DNNs from OPQ deliver on average 40.46% and 37.17%
with only 0.93% and 1.32% top-1 accuracy loss. Such ac-
curacy results are almost identical to the ones from our
framework (see Figure 7(a)). Still, our energy gains for both
datasets are on average 12.77% and 7.16% higher, respec-
tively, thus proving the effectiveness of one-shot method-
ologies in discovering an optimal pruning and quantization
profile per layer. Note however, OPQ requires 5 retraining
epochs to reach such accuracy levels.

Once again, the state-of-the-art did not manage to pro-
duce a DNN of acceptable accuracy levels (< 10%) on

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 11

the challenging ImageNet dataset. For ASQJ, the ADMM
algorithm, despite its known capabilities, cannot traverse
the design space as effectively as our RL agent, since it lacks
the incentive to explore the limited region of high-accuracy
solutions, which we achieve via our specialized reward
function (see Section 4.2.3). OPQ on the other hand, even
though no access to training data is needed, seems to heavily
rely on fine-tuning steps, since the trend on CIFAR datasets
did not continue here as well. Contrarily, our framework
operates in a truly one-shot fashion, without needing any
retraining, albeit at the cost of elevated time complexity (see
Section 5.3.3).

5.3 Exploration Efficacy

5.3.1 Pruning/Quantization Analysis

In this section, we provide insight to the intuition behind
our RL agent’s actions, regarding the pruning ratio, quanti-
zation precision and pruning algorithm, per layer. Figure 8
presents a descriptive example of the solutions obtained by
our framework and the derived pruning and quantization
policy. For readability reasons, ResNet18 is used (comprises
only 20 layers), but similar results are obtained for the
other DNNs. Interpreting the selected pruning policy, the
first layers are pruned conservatively using coarse-grained
algorithms (see Table 2). Considering the sensitivity (and
therefore, lack of redundancy) of the first layers, a con-
servative pruning policy is a reasonable outcome, in order
to retain the prediction accuracy to acceptable levels. We
observe that a series of coarse-grained algorithms (at similar
pruning ratios) are selected for the middle stage of the
model, since the size of each layer remains the same within
that stage. Additionally, our Rainbow agent recognizes the
DDPG features corresponding to low sparsity and attributes
coarse-grained pruning techniques to increase the poten-
tial energy gains. Interestingly, the last two layers, which
are fully-connected, and consequently more redundant, are
pruned in a more aggressive manner with fine-grained
techniques. Our quantization policy has protected the first
and last layers from aggressive quantization, keeping them
at 7 or 8 bits. Noticeably, the final shortcut convolutional
layer (i.e., layer 16 in Figure 8) is barely pruned, but heavily
quantized to low precision. Extensively pruning that layer
would result to accuracy degradation, due to its inter-layer
dependencies to the consecutive residual block. Thus, quan-
tization drives the potential energy gains without signifi-
cantly deteriorating the accuracy by pruning a critical layer.
The heterogeneity of sparsities/precisions directly reflects
our agent’s ability to identify the sensitivity in pruning and
quantization of the different layers of the DNN. Moreover,
the complementary nature by which each layer is pruned
and quantized stands as testament to the efficacy of our
framework in intelligently exploring the joint design space.

5.3.2 Comparison against heuristic algorithm

To better highlight the performance of our learning-based
design space exploration, we compare our composite RL
scheme against the widely adopted NSGA-II [45] algorithm.
NSGA-II has prevailed as one of the most useful and
fast heuristic-based exploration algorithms in the literature,

0.00

0.25

0.50

S
p
a
rs

it
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

2

4

6

8

P
re

ci
si

o
n

Layer Index

L1-Ranked Filters

L2-Ranked Filters

Bernoulli

L1-Ranked Channels

Sensitivity

Splicing

Fig. 8: Analytical demonstration of the pruning and quantization deci-
sions made by our RL agent for the ResNet18 model on the CIFAR-10
dataset.

due to its capability of converging quickly and generating
Pareto-optimal solutions.

NSGA-II searches for an optimal pruning/quantization
configuration simultaneously for all L DNN layers (contrary
to the step-wise operation of RL algorithms), thus creating
a genome of length 3 × L. Continuous variables are there-
fore required, forcing the pruning algorithm variable to be
controlled by rounding to discrete values which represent
indices. All (initially random) chromosomes (i.e., parent
population) are subjected to the standard iterative proce-
dure of the NSGA-II, i.e., tournament selection, simulated
binary crossover and polynomial mutation. Such operators
are tailored for continuous space exploration. From a com-
bined pool of parent and children chromosomes, the non-
dominated solutions are selected via fast non-dominated
sorting and truncation based on crowding distance. To en-
sure a fair comparison, the GA is allowed the same number
of evaluations (i.e., energy and accuracy estimation) as our
RL algorithm. Since our agents are trained for 1100 episodes
(see Section 5.1), we configured the NSGA-II to run for 55
generations, with a population size of 20 chromosomes, to
balance the exploration/exploitation trade-off. Importantly,
all the evaluations are conducted in the same manner as
our technique, including our hardware aware reward, which
serves as the fitness function2 (i.e., a single fitness objective
is conducted). The output of the genetic algorithm is the
single solution (pruned/quantized DNN) with the highest
reward value (see Section 4.2.3).

We present the comparative evaluation results in Fig-
ure 9. Overall, NSGA-II produces DNNs of high accuracy
loss, albeit elevated energy gains. For CIFAR-10, which
is a more error-tolerant task (classification to 10 classes),
a significant (but not destructive) top-1 loss of ~8% on
average is observed. For the rest of the extracted models,
for the more demanding datasets (with faded markers in
Figure 9), the best NSGA-II solution fails to limit the classi-
fication accuracy below 10%. This can be attributed to the
limited amount of allowed evaluations and the imposed
tight accuracy constraints. As mentioned in Section 4.2.3,
the area of interest for our reward is a very limited, high-
accuracy region in the Pareto curve of the possible accuracy-
energy trade-offs. That is because training data are not used

2. Since NSGA-II strives to minimize the fitness objectives, we use
the inverse reward (i.e., multiplied by −1).

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 12

VGG11

VGG13

ResN
et1

8

VGG16

ResN
et3

4

Mob
ile

NetV
2

ResN
et5

0

VGG19

Sq
ue

eze
Net

0

20

40

60

To
p-

1
A

cc
ur

ac
y

Lo
ss

[%
]

20

40

60

80

100

E
nergy

G
ain

[%
]

NSGA-II: Top1 Loss
Ours: Top1 Loss

NSGA-II: Energy Gain
Ours: Energy Gain

Fig. 9: Comparative evaluation between our composite RL agent and
the NSGA-II algorithm [45], in terms of top-1 accuracy loss and en-
ergy gain. NSGA-II does not manage to produce DNNs of acceptable
accuracy loss (< 5%), and the CIFAR-10 networks are the only ones
with loss lower than 10%. Faded lines and markers represent DNNs of
unacceptable accuracy loss (> 10%).

and therefore, the possibility of improving the final accuracy
after pruning or quantization is absent. Our learning-based
exploration is able to guide the RL agent towards (useful)
solutions of high accuracy (which represent a very small
sample of our entire design space), even at the cost of mod-
erate energy gains (e.g., for the ImageNet dataset). Genetic
algorithms are less sample efficient (since they heavily rely
on stochastic processes) in favor of quick execution, and
cannot respond well when having to deal with a limited
amount of evaluations.

5.3.3 Execution Time and Memory Requirements
Finally, we evaluate the execution time and memory re-
quirements of our framework, and specifically, our RL-
based optimization, in comparison to state-of-the-art tech-
niques [15], [17], [18], [24]. Since the number of iterations
(e.g., RL training episodes) is a user-defined parameter,
our comparisons involve a single iteration for each studied
method. To ensure a fair comparison against the state of the
art, the same contributing factors to the performance of each
technique were used (e.g., number of worker threads, batch
size, etc.). Measurements were conducted on a desktop
computer featuring an NVIDIA GeForce RTX 2080 Super
GPU operating at 1.65 GHz and 32GB of RAM. Table 3
presents the normalized (w.r.t. the fastest technique) average
execution time of a single iteration for all evaluated models
on each dataset, taken from an average over 50 iterations, to
avoid statistical bias. Table 4 presents a comparison of the
memory utilization for the studied techniques.

Overall, the reported execution time of our framework
is on the higher end compared to the state of the art,
whilst having comparable memory requirements. OPQ [18]
presents the lowest time complexity due to its quick one-
shot mathematical analysis of pruning/quantization, which
translates though to elevated memory utilization for Im-
ageNet, mostly due to multiple copies of weight tensors.
ASQJ’s [24] memory efficiency due to the sequential nature
of parameter update of the ADMM algorithm proves to be

TABLE 3: Comparative evaluation for the execution time of a single iter-
ation among our proposed framework and state-of-the-art techniques.
The average execution time over all evaluated models on each dataset
is obtained. The fastest technique is used as the normalization baseline
for each dataset.

Dataset Ours AMC [15] HAQ [17] ASQJ [24] OPQ [18]
CIFAR-10 5.61x 5.60x 2.743x 19.89x 1.00x
CIFAR-100 29.35x 12.85x 4.94x 19.82x 1.00x
ImageNet 5.67x 1.39x 2.82x 39.62x 1.00x

TABLE 4: Memory requirements for the execution of a single iteration of
our proposed framework and state-of-the-art techniques. The average
memory utilization per dataset is reported (using Python’s memory
profiler package), normalized w.r.t the lowest utilization among all
methods.

Dataset Ours AMC [15] HAQ [17] ASQJ [24] OPQ [18]
CIFAR-10 1.19x 1.08x 1.34x 1.00x 1.15x
CIFAR-100 1.20x 1.09x 1.34x 1.00x 1.15x
ImageNet 1.31x 1.00x 1.50x 1.15x 1.74x

time consuming. Our framework’s overhead is governed by
the RL agent’s update scheme, and the reward calculation
(mainly its accuracy term), which has to be repeated at each
step, for the reasons outlined in Section 4.2.2. The latter leads
to elevated time complexity, which is evident for the com-
plex and deep MobileNetV2 architecture. Such calculations
are also present in the state-of-the-art approaches, which
helps keep the memory utilization measurements at similar
levels. So, even though we do not possess an advantage in
these comparisons, the overhead introduced by our tech-
nique is on par with the state of the art. Note, exploring the
joint pruning and quantization design space gives an imme-
diate disadvantage to our proposed technique compared to
standalone approaches [15], [17]. Importantly, most related
approaches require post-optimization fine-tuning, which
significantly increases their memory utilization, especially
with the high level of data parallelism normally used for
modern datasets. Overhead reduction, as well as improving
the scalability of our technique is left for future work.

6 CONCLUSION

In this work, we propose an automated hardware-aware
framework to holistically compress DNNs for energy-
efficient inference. We explore the joint design space of fine-
and coarse-grained pruning and mixed-precision quantiza-
tion using a novel, composite RL-agent with a custom LUT-
based reward. Our framework does not require any fine-
tuning and/or long-term retraining steps thus satisfying
proprietary and/or privacy constraints. Targeting to reduce
energy consumption whilst minimally affecting prediction
accuracy, we exceed the state-of-the-art compression tech-
niques (that use fine-tuning). Our framework achieves ~39%
average energy reduction across all studied DNNs.

REFERENCES

[1] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in International Symposium on Computer Architec-
ture, 2017, p. 1–12.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 13

[2] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp.
127–138, 2016.

[3] H. Amrouch, G. Zervakis, S. Salamin, H. Kattan, I. Anagnostopou-
los, and J. Henkel, “Npu thermal management,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 11, pp. 3842–3855, 2020.

[4] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” Advances in neural
information processing systems, vol. 28, 2015.

[5] N. Lee, T. Ajanthan, and P. H. Torr, “Snip: Single-shot network
pruning based on connection sensitivity,” in International Confer-
ence on Learning Representations, 2019.

[6] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for
efficient dnns,” Advances in neural information processing systems,
vol. 29, 2016.

[7] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” in International Conference on Learning
Representations, 2017.

[8] X. Gao, Y. Zhao, Ł. Dudziak, R. Mullins, and C.-z. Xu, “Dynamic
channel pruning: Feature boosting and suppression,” in Interna-
tional Conference on Learning Representations, 2019.

[9] X. Ma et al., “Non-structured dnn weight pruning–is it beneficial in
any platform?” IEEE Transactions on Neural Networks and Learning
Systems, 2021.

[10] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “PACT: Parameterized clipping activation
for quantized neural networks,” in International Conference on
Learning Representations, 2018.

[11] B. Jacob et al., “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Conference on
Computer Vision and Pattern Recognition, 2018.

[12] T.-J. Yang et al., “Netadapt: Platform-aware neural network adap-
tation for mobile applications,” in European Conference on Computer
Vision, 2018.

[13] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient
convolutional neural networks using energy-aware pruning,” in
Conference on Computer Vision and Pattern Recognition, 2017, pp.
5687–5695.

[14] T. Wang et al., “Apq: Joint search for network architecture, pruning
and quantization policy,” in Conference on Computer Vision and
Pattern Recognition, 2020.

[15] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl
for model compression and acceleration on mobile devices,” in
European Conference on Computer Vision, 2018.

[16] G. Zervakis, O. Spantidi, I. Anagnostopoulos, H. Amrouch, and
J. Henkel, “Control variate approximation for dnn accelerators,”
in Design Automation Conference, 2021, pp. 481–486.

[17] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” in Conference on
Computer Vision and Pattern Recognition, 2019, pp. 8604–8612.

[18] P. Hu, X. Peng, H. Zhu, M. M. S. Aly, and J. Lin, “Opq: Compress-
ing deep neural networks with one-shot pruning-quantization,”
in AAAI Conference on Artificial Intelligence, vol. 35, no. 9, 2021, pp.
7780–7788.

[19] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” in International Conference on
Learning Representations, 2019.

[20] W. Niu et al., “Patdnn: Achieving real-time dnn execution on mo-
bile devices with pattern-based weight pruning,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems. Association for Computing Machinery, 2020,
p. 907–922.

[21] R. Banner, Y. Nahshan, and D. Soudry, “Post training 4-bit quanti-
zation of convolutional networks for rapid-deployment,” in Con-
ference on Neural Information Processing Systems. Curran Associates
Inc., 2019.

[22] R. Zhao, Y. Hu, J. Dotzel, C. De Sa, and Z. Zhang, “Improving neu-
ral network quantization without retraining using outlier channel
splitting,” International Conference on Machine Learning, pp. 7543–
7552, June 2019.

[23] C. Gong, Y. Chen, Y. Lu, T. Li, C. Hao, and D. Chen, “Vecq:
Minimal loss dnn model compression with vectorized weight
quantization,” IEEE Transactions on Computers, vol. 70, no. 05, pp.
696–710, 2021.

[24] H. Yang, S. Gui, Y. Zhu, and J. Liu, “Automatic neural net-
work compression by sparsity-quantization joint learning: A con-
strained optimization-based approach,” in Conference on Computer
Vision and Pattern Recognition, 2020.

[25] A. T. Elthakeb, P. Pilligundla, F. Mireshghallah, A. Yazdanbakhsh,
and H. Esmaeilzadeh, “Releq : A reinforcement learning approach
for automatic deep quantization of neural networks,” IEEE Micro,
vol. 40, no. 5, pp. 37–45, 2020.

[26] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and
huffman coding,” in International Conference on Learning Represen-
tations, 2015.

[27] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all:
Train one network and specialize it for efficient deployment,” in
International Conference on Learning Representations, 2019.

[28] Y. Wang, Y. Lu, and T. Blankevoort, “Differentiable joint pruning
and quantization for hardware efficiency,” in European Conference
on Computer Vision. Springer, 2020, pp. 259–277.

[29] F. Tung and G. Mori, “Deep neural network compression by in-
parallel pruning-quantization,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 42, no. 3, pp. 568–579, 2018.

[30] J. Kim, K. Yoo, and N. Kwak, “Position-based scaled gradient for
model quantization and pruning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 20 415–20 426, 2020.

[31] S. J. Kwon, D. Lee, B. Kim, P. Kapoor, B. Park, and G.-Y. Wei,
“Structured compression by weight encryption for unstructured
pruning and quantization,” in Conference on Computer Vision and
Pattern Recognition, 2020, pp. 1909–1918.

[32] J. Kim, S. Chang, and N. Kwak, “PQK: Model Compression
via Pruning, Quantization, and Knowledge Distillation,” in Inter-
speech, 2021, pp. 4568–4572.

[33] E. Frantar and D. Alistarh, “Optimal brain compression: A frame-
work for accurate post-training quantization and pruning,” Ad-
vances in Neural Information Processing Systems, vol. 35, pp. 4475–
4488, 2022.

[34] M. Van Baalen et al., “Bayesian bits: Unifying quantization
and pruning,” Advances in Neural Information Processing Systems,
vol. 33, pp. 5741–5752, 2020.

[35] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Conference on Computer Vision and
Pattern Recognition, 2017, pp. 1389–1397.

[36] H. Pan, X. Niu, R. Li, S. Shen, and Y. Dou, “Dropfilter: a novel reg-
ularization method for learning convolutional neural networks,”
Neural Processing Letters, vol. 51, pp. 1285–1298, 2020.

[37] J.-S. Park et al., “9.5 a 6k-mac feature-map-sparsity-aware neural
processing unit in 5nm flagship mobile soc,” in IEEE International
Solid-State Circuits Conference, vol. 64, 2021, pp. 152–154.

[38] S. Venkataramani et al., “Rapid: Ai accelerator for ultra-low
precision training and inference,” in International Symposium on
Computer Architecture, 2021, pp. 153–166.

[39] N. P. Jouppi et al., “Ten lessons from three generations shaped
google’s tpuv4i : Industrial product,” in International Symposium
on Computer Architecture, 2021.

[40] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in International Conference on Learning Representations,
2015.

[41] M. Hessel et al., “Rainbow: Combining improvements in deep re-
inforcement learning,” in AAAI Conference on Artificial Intelligence,
vol. 32, no. 1, 2018.

[42] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas, “Dueling network architectures for deep reinforce-
ment learning,” in International Conference on Machine Learning,
2016.

[43] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d mem-
ory,” in International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2017, pp. 751–764.

[44] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tangram:
Optimized coarse-grained dataflow for scalable nn accelerators,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 807–820.

[45] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 14

Konstantinos Balaskas received his Bache-
lor Degree in Physics and Master Degree in
Electronic Physics from the Aristotle University
of Thessaloniki in 2018 and 2020, respectively.
Currently, he is a pursuing the PhD degree at
the same institution, jointly with the Chair for Em-
bedded Systems (CES) at the Karlsruhe Insti-
tute of Technology (KIT), Germany. His research
interests include machine learning for resource-
constrained platforms and physical-driven ap-
proximate computing.

Andreas Karatzas received the Integrated Mas-
ter degree (Diploma) from the department of
Computer Engineering and Informatics (CEID),
University of Patras, Patras, Greece, in 2021.
He is currently pursuing the Ph.D. degree at the
School of Electrical, Computer and Biomedical
Engineering at Southern Illinois University, Car-
bondale, Illinois, as a member of the Embedded
Systems Software Lab. His research interests
include embedded systems, approximate com-
puting, and deep learning.

Christos Sad received the Integrated Master
degree (Diploma) from the department of Elec-
trical and Computer Engineering (ECE), Aris-
totle University of Thessaloniki(AUTh), in 2021.
He is currently pursuing the Ph.D. degree at
the School of Physics, department of Electron-
ics and Computers, Aristotle University of Thes-
saloniki(AUTh). His research interests include
optimization, approximate computing, neural ar-
chitecture search, GPU programming and GPU
acceleration.

Kostas Siozios received his Diploma, Master
and Ph.D. Degree in Electrical and Computer
Engineering from the Democritus University of
Thrace, Greece, in 2001, 2003 and 2009, re-
spectively. Currently, he is Associate Professor
at Department of Physics, Aristotle University of
Thessaloniki. His research interests include Dig-
ital Design, Hardware Accelerators, Resource
Allocation and Machine Learning. Dr. Siozios
has published more than 170 papers in peer-
reviewed journals and conferences. Also, he has

contributed in 5 books of Kluwer and Springer. He has worked as Project
Coordinator, Technical Manager or Principal Investigator in 28 research
projects funded from the European Commission (EC), European Space
Agency (ESA), as well as National Funding.

Iraklis Anagnostopoulos is an Associate Pro-
fessor at the School of Electrical, Computer and
Biomedical Engineering at Southern Illinois Uni-
versity, Carbondale. He is the director of the
Embedded Systems Software Lab, which works
on run-time resource management of modern
and heterogeneous embedded many-core archi-
tectures, and he is also affiliated with the Center
for Embedded Systems. He received his Ph.D. in
the Microprocessors and Digital Systems Labo-
ratory of National Technical University of Athens.

His research interests lie in the area of approximate computing, hetero-
geneous hardware accelerators, and hardware/software co-design.

Georgios Zervakis is an Assistant Professor at
the University of Patras. Before that he was a
Research Group Leader at the Chair for Embed-
ded Systems (CES), at the Karlsruhe Institute
of Technology (KIT) from 2019 to 2022. He re-
ceived the Diploma and Ph.D. degrees from the
School of Electrical and Computer Engineering
(ECE), National Technical University of Athens
(NTUA), Greece, in 2012 and 2018, respectively.
Dr. Zervakis serves as a reviewer in many IEEE
and ACM journals and is also a member of the

technical program committee of several major design conferences. He
has received one best paper nomination at DATE 2022. His main re-
search interests include low-power design, accelerator microarchitec-
tures, approximate computing, and machine learning.

Jörg Henkel (M’95-SM’01-F’15) is with Karl-
sruhe Institute of Technology and was before
a research staff member at NEC Laboratories,
Princeton, NJ. He has received six best paper
awards from, among others, ICCAD, ESWeek
and DATE. For two terms he served as the
Editor-in-Chief for the ACM Transactions on Em-
bedded Computing Systems. He is currently the
Editor-in-Chief of the IEEE Design&Test Maga-
zine and is/has been Associate Editor for major
ACM and IEEE Journals. He has led several

conferences as a General Chair incl. ICCAD, ESWeek and serves as
Steering Committee chair/member for leading conferences and journals
for embedded and cyber-physical systems. Prof. Henkel coordinates
the DFG program SPP 1500 “Dependable Embedded Systems” and
is a site coordinator of the DFG TR89 collaborative research center
“Invasive Computing”. He is the chairman of the IEEE Computer Society,
Germany Chapter, and a Fellow of the IEEE.

