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Abstract—The rise of Machine Learning (ML) and the wide use of
Deep Neural Networks (DNNs) have led to the development of specialized
DNN accelerators, aimed at improving the computing capabilities of
ML systems. While these accelerators have been beneficial in enhancing
computational efficiency, their design presents significant challenges due
to the complexity of hardware configurations. Additionally, it is critical
to consider and address the environmental implications and challenges.
Unfortunately, these aspects have often been neglected during the design
of ML systems. The carbon footprint, both operational and embodied,
of these accelerators is a growing concern, with the latter becoming
increasingly significant. This paper presents a framework for designing
DNN accelerators with an emphasis on embodied carbon footprint.
Using a genetic algorithm, we address the balance between performance
and sustainability, focusing on reducing the embodied carbon footprint.
Experimental results on different types of DNNs show that our method, by
exploiting the properties of on-chip logic and memory, can generate DNN
accelerators with considerably less embodied carbon and with a negligible
performance overhead.

Index Terms—Deep Neural Networks, Embodied Carbon Footprint,
DNN Accelerators, Sustainable Computing

I. INTRODUCTION

The growth of Machine Learning (ML) in the last years has been
remarkable, making Deep Neural Networks (DNNs) a key component
in modern computing systems. This has led to an increased demand
for specialized DNN accelerators, which are computing architectures
tailored to efficiently process the complex operations of DNNs. These
accelerators are important for enhancing the speed and efficiency of
ML systems, enabling them to handle more complex tasks faster than
conventional computing components.

Designing hardware accelerators, within specific area constraints,
presents a significant challenge, particularly due to the vast design
space for hardware configurations and mappings [1]. This complexity
is based on deciding the number of Processing Elements (PEs), as well
as the configurations of local and global memories, which can greatly
differ and significantly affect the accelerator’s performance. The task
of mapping DNNs onto these hardware accelerators introduces another
dimension of complexity, significantly increasing the search space.
This complexity is further increased due to the inter-dependencies
between hardware configurations and DNN mapping strategies, where
choices in one area can severely influence outcomes in the other.
Previous works have shown that the possible hardware configurations
are in the order of billions [2]. These factors highlight the critical
need for developing sophisticated automation methods capable of co-
exploration of hardware configurations and DNN mappings, avoiding
also manual tuning.

Although the field of ML is evolving rapidly, it is critical to consider
and address the environmental implications and challenges. Unfortu-
nately, these aspects have often been neglected during the design of
hardware accelerators [3]. In particular, operating and designing hard-
ware accelerators carries a substantial environmental operational and
embodied carbon footprint. The term operational refers to the carbon
footprint associated with the ongoing operation and maintenance of the
ML systems, including energy consumption and cooling requirements,

while embodied refers to the carbon footprint associated with the
entire life cycle of the devices, including their design, manufacturing,
and disposal. Although, previous works focus on the impact of
operational carbon footprint [4], [5], recent studies showed that the
embodied carbon footprint of systems is becoming a dominating
factor for ML’s overall environmental impact [6] and optimizations
at that level are still unexplored. In particular, previous studies have
demonstrated that the use of hardware accelerators can substantially
reduce the operational carbon footprint and energy consumption of
DNN training [7]. However, these accelerators require more system
resources, leading to larger embodied carbon footprints [8].

Therefore, designing sustainability-based DNN accelerators should
move beyond traditional optimization methods. Specifically, the em-
bodied carbon footprint can be reduced by scaling down energy-
efficient hardware accelerators and lowering footprint circuit design.
However, this approach introduces a performance and sustainability-
oriented dilemma. On one hand, minimizing the size and increasing
the efficiency of hardware components can lead to lower energy
consumption during operation, contributing to a reduced operational
and embodied carbon footprint. On the other hand, targeting high per-
formance requires sophisticated and often resource-intensive hardware
designs, which can increase the embodied carbon footprint through the
use of more complex manufacturing processes, and increased resource
utilization. This delicate balance between enhancing performance and
reducing embodied carbon poses significant challenges.

In this paper, we present a framework for carbon-aware design
of DNN accelerators. In particular, we present a genetic algorithm-
oriented method to design hardware accelerators, under a specific
area budget, considering hardware architecture, mapping of DNNs,
and embodied carbon. The innovations of our work are manyfold:
(1) Our framework simultaneously considers sustainability alongside
traditional first-order metrics like performance and power efficiency
for optimization, ensuring a holistic approach to accelerator design.
(2) We integrate embodied carbon modeling directly into the design
process of DNN accelerators, utilizing sustainability-oriented metrics
as key decision-making tools. (3) Our approach reduces the embodied
carbon footprint of the DNN accelerator with negligible performance
impact.

II. RELATED WORK

Modern research towards the estimation of embodied carbon emis-
sions has been derived from data in Life Cycle Assessment (LCA)
reports [9], [10]. Although the investigation of such analyses is very
important, LCA summaries cannot be considered in early-stage design
space exploration, as they provide coarse-grained information, that
usually corresponds to older semiconductor technologies [11]. Other
models [12], [13] may correlate embodied carbon footprint with only
one parameter like the die area or the manufacturing cost. However,
as it has been proven, the CO2 emissions depend on multiple factors,
like the fab characteristics and the technology of the transistors [14],
so a more detailed method should be deployed.



Although there have been various studies [15], [16] that investigate
the energy efficiency and the optimal utilization of hardware resources
in DNN accelerators, it is not sufficient concerning the sustainabil-
ity. In reality, such methods may even increase the manufacturing
footprint, due to the additional circuit control complexity [17]. The
need for sustainability has led to novel optimization metrics, used
during the accelerator design phase. Apart from performance, power
and area, the device carbon footprint is also taken into account.
There have been several approaches [11], [6], [18] that combine
both embodied and operational CO2 emissions throughout the life
of the accelerator. Nevertheless, operational and embodied carbon
are estimated on different scales and therefore cannot be practically
compared [19]. For this reason, in our optimization strategy, we
consider only the embodied carbon footprint, which is responsible
for most of the environmental impact of edge devices [6].

Regarding the DNN accelerator Design Space Exploration (DSE),
previous methodologies tend to use optimization methods that examine
both the hardware configuration and the mapping strategy, given a
specific workload. Many studies [20], [2], [21], [22] divide the
workload in layers and perform an optimization strategy examining
each layer separately, ignoring any inter-layer modification. Each final
design point has to satisfy some resource constraints, such as power
consumption and area, which are very crucial in edge devices. Certain
tools [21], [22] may find an optimal solution using a two-loop
searching algorithm, by first selecting a hardware configuration and
then reaching the most efficient mapping strategy for the predefined
architecture. The process recurs in a feedback closed loop, according
to the optimization procedure. However, this method results in a very
large sample space and, in order to get a solution in a reasonable
time, the authors have to substantially restrict the possible design
points. Other works [20], [2] choose to flatten the hardware dataflow
search space into one loop and thereby achieve faster results and better
sample efficiency. Among these DSE solutions, Digamma framework
[2] implements a domain-aware genetic algorithm to find an optimal
solution under specific resource constraints, for a given neural network.
The estimation of latency, energy and hardware requirements is
employed by the cost model MAESTRO [23]. The differentiators
of our work lies in the formulation of the embodied carbon for DNN
accelerators, the integration of this metric into the design process, and
the exploration of the vast design space.

III. BACKGROUND AND MOTIVATION

The need for DNN accelerators arises from the increasing com-
plexity and computational demands of modern neural networks. These
accelerators are designed to efficiently execute the massive number of
computations required by DNNs, enabling faster and more energy-
efficient inference and training processes. In this work, we utilize
the Eyeriss accelerator [24] as the architectural template for our
exploration. The Eyeriss accelerator has a unique internal architecture
that enables efficient processing of convolutional neural networks. At
its core, Eyeriss consists of a large array of Processing Elements
(PEs) organized in a mesh-like structure. Each PE is responsible
for executing a specific portion of the neural network computation.
The PEs are connected through a network-on-chip that facilitates
data communication and synchronization between them. Additionally,
Eyeriss incorporates a dedicated memory hierarchy that includes local
memories associated with each PE, as well as a shared buffer for
storing intermediate results. This hierarchical memory organization
minimizes data movement and maximizes data reuse, leading to
improved energy efficiency and performance.

As aforementioned, the embodied carbon footprint refers to the
footprint associated with the entire life cycle of the devices, including
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Fig. 1: Pareto front between cycle count (latency) and normalized
embodied CO2 for the first three layers of the VGG network.

their design, manufacturing, and disposal. The goal of this work
is to associate the embodied carbon footprint with the architectural
characteristics of the accelerator considering a standard manufacturing
process. Particularly, considering a DNN accelerator that follows the
Eyeriss architectural template, the embodied carbon emissions origi-
nate predominantly from the fabrication of PEs, the SRAM memories
(local and global) and the chip packaging. However, the calculation of
such a quantity is a multidimensional process that cannot be simplified
into a linear model based solely on chip area or financial cost [11],
[18]. Thus, to derive the CO2 emissions, we follow the computation
of the overall embodied carbon of the accelerator using ACT [11]
as a baseline. Since ACT follows a more coarse-grain approach, we
enriched it with more on-chip information using the model in [18].
Specifically, we considered the internal architecture of the accelerators,
in terms of PEs and memories, the footprint of raw material extraction,
the node technology in use, the wafer yield, as well as the final die
packaging. For a single DNN accelerator chip, the embodied carbon
footprint is calculated as:

Cembodied = Clogic + Cmemory + Cpackaging (1)

where the embodied carbon of each component is given by the
formula [11]:

Ci
embodied = (CIfab × EPA+MPA+GPA)× A

Y
(2)

The carbon intensity of the fabrication facility’s electrical grid is
denoted as CIfab, while EPA represents the energy used by the
fab per unit area of the die. MPA indicates the carbon footprint of
materials procured for manufacturing per unit area, and GPA refers
to the direct emissions from gases used in the fabrication process.
A stands for the area of the die, and Y symbolizes the yield of the
fabrication process.

Previous research has demonstrated that designing DNN acceler-
ators solely with performance metrics in mind significantly impacts
the embodied carbon of these systems [11]. Recognizing this, we



present a motivational example that shows the importance of including
embodied carbon in the design criteria for DNN accelerators. Our
primary objective is to demonstrate that it is possible to design
DNN accelerators with considerably lower embodied carbon without
compromising on performance. In our motivational example, we utilize
MAESTRO [23] to model and evaluate DNN accelerator designs and
mappings under the same area budget (the exact experimental set
up will be presented in detail in Section V). Specifically, we focus
on the first three layers of the VGG16 network. Understanding that
different layers may require distinct architectural optimizations, we
used MAESTRO to generate mutliple random DNN architectures for
each of the three layers, all within an area constraint of 0.2mm2. This
approach aligns with previous works showing that the optimal design
varies significantly from layer to layer [2]. Figure 1 shows the Pareto
front between cycle count (latency) and normalized embodied CO2

for the three first three layers of VGG16.
Based on Figure 1, we observe that accelerator designs that achieve

lower latency tend to have higher embodied carbon, primarily due
to the need for more PEs. This correlation suggests that designs
optimized solely for speed may inadvertently lead to an increased
embodied carbon footprint. Interestingly, our example also shows
that for all layers examined, there are viable design solutions that
achieve substantially lower embodied carbon while still maintaining
low latency. This is particularly important as it pinpoints that focusing
exclusively on latency can lead to over-design. Often, such strict
optimization for minimal latency may not always be necessary, and
a more balanced approach could yield equally effective, yet more
sustainable solutions. Additionally, all the setups that we showed
were randomly generated. This is because the whole design space
is vast. For example, in a static hardware architecture a single layer
of a DNN can be mapped in O(1024) different ways [2]. This
leads to an important question: How can we effectively explore this
expansive space to identify designs that optimally balance perfor-
mance with reduced embodied carbon? Efficient exploration strategies
are essential for systematically identifying the most sustainable and
efficient designs, while still achieving low latency. Finally, another
interesting aspect is that the first layers of the VGG network are more
compute-intensive compared to later layers. This characteristic affects
the design strategies that can be applied, as the early layers may
require more robust hardware configurations, potentially impacting
both performance and embodied carbon.

Based on the previous analysis, first-order metrics, such as latency,
provide valuable insights into the performance of a DNN accelerator
architecture. However, they are not sufficient for a comprehensive eval-
uation that takes into account the environmental impact. To integrate
and quantify the carbon footprint associated with the accelerator, it
is necessary to introduce new metrics. In this work, we utilize the
carbon delay product (CDP) as a metric that combines the performance
aspects with the embodied carbon footprint. The CDP metric considers
the total delay incurred by the accelerator during the execution of
a neural network, taking into account both the computational time
and the associated embodied carbon footprint. By incorporating the
CDP metric, we can evaluate the architectural characteristics of the
accelerator in terms of its impact on both performance and embodied
carbon footprint.

IV. METHODOLOGY

Figure 2 presents an overview of our proposed methodology. Our
objective is to design the hardware architecture of a DNN accelerator
(for each layer of a DNN) and determine the corresponding mapping to
optimize the Carbon Delay Product (CDP). As previously mentioned,
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Fig. 2: Overview of the proposed methodology

the CDP is a metric that integrates performance measures with the
embodied carbon footprint, offering a holistic assessment. In our
methodology, we explore various hardware characteristics, including
the width and height of the DNN accelerator, defined by the number
of Processing Elements (PEs), the capacity of the local buffer for each
PE, and the size of the shared global buffer. Additionally, the mapping
characteristics considered are tiling, order, and level of parallelism
of execution. Given the vast design space of potential solutions, we
employ a genetic algorithm to navigate this complexity efficiently. Our
approach aims to generate a Pareto front that represents optimal trade-
offs between performance and embodied carbon, under the constraint
of a predefined area budget for the final designs.

The first step in our methodology is the design of the chromosome,
later used in the genetic algorithm for optimizing DNN accelerator de-
signs. In genetic algorithms, a chromosome is essentially a structured
representation of a solution’s variables. In this work, the chromosome
encodes comprehensive information about both hardware characteris-
tics and mapping strategies of the DNN accelerator. Regarding the
hardware aspects, the chromosome includes information such as the
number of Processing Elements (PEs), organized in an XY mesh
to support specific interconnections and data flow strategies. It also
contains the capacity of the local buffer for each PE and the size of the
shared global buffer. These elements are vital as both PEs and memory
systems are the major sources of a chip’s embodied carbon footprint.
Moreover, their arrangement and cooperation impact execution run-
time significantly, as the logic and memory elements present complex
inter-dependencies that need to be investigated in depth, for an optimal
selection. We mainly focus on DNN models that are either explicitly
Convolutional Neural Networks (CNN), or their operations can be
simplified into a set of convolutions, even if they are not traditional
CNNs. This approach allows us to represent every layer operations
with a multi-dimensional for-loop, that is flexible in terms of loop
ordering, sectioning and parallelization. Accordingly, the mapping
part of our chromosome follows the optimizations described in [2],
a comprehensive framework for hardware mapping. This includes
tiling, which defines how tensors are sliced, stored, and fetched within
the memory hierarchy, effectively managing data locality and access
patterns. It also includes the compute order, specifying the sequence
in which computational operations are executed, and the level of
parallelism, which determines how computations are distributed across



the PEs. These mapping characteristics are critical as they directly
affect the execution speed and efficiency of the DNN, ensuring that the
hardware’s capabilities are fully utilized. By integrating both hardware
characteristics and mapping strategies in a single chromosome, the
algorithm achieves design space co-exploration, providing both sample
efficacy and convergence speed. Moreover, the efficient selection of
the sample design points leads to identifying solutions that optimize
the CDP while addressing the trade-offs between performance and
embodied carbon footprint.

In the context of designing DNN accelerators under specific con-
straints, our problem formulation requires finding the optimal configu-
ration of Processing Elements (PEs), local buffers, global buffers, and
efficient mapping for each layer of a DNN. The goal is to optimize the
Carbon Delay Product (CDP), balancing performance and embodied
carbon footprint, all within a predetermined chip area budget.

A genetic algorithm (GA) is a search heuristic that mimics the
process of natural selection. This algorithm represents potential so-
lutions as chromosomes, which evolve over generations to find the
most optimal solution to a problem. In our case, as mentioned above,
each chromosome encodes different configurations of hardware and
mappings that collectively determine the accelerator’s performance
and carbon footprint. The fitness of each chromosome is evaluated
using the CDP as a reward function, which integrates latency with
embodied carbon footprint considerations. If a solution exceeds the
chip area budget, it is penalized, effectively receiving a fitness score
of negative infinity. This ensures that non-viable solutions are quickly
discarded from the population pool. The algorithm iteratively refines
the population through the processes of selection, crossover, mutation,
and aging. Crossover is a process where segments of two parent
chromosomes are combined to produce offspring, potentially inheriting
the strengths of both parents. Mutation, on the other hand, introduces
random alterations to a chromosome. This helps maintain diversity
within the gene pool and prevents the algorithm from becoming
stuck in local optima. Aging is another mechanism used in GAs
to prevent the stagnation of the population. Older solutions may be
phased out over time, allowing newer solutions, potentially with better
adaptability to the problem constraints, to dominate the population.
This ensures that the population does not converge prematurely and
continues to explore new areas of the solution space. Over time, as less
fit solutions are discarded and more promising solutions are promoted,
the GA converges towards a solution that optimally balances the CDP
while adhering to the area constraint. Through these mechanisms, the
genetic algorithm effectively searches through a vast and complex
design space, gradually evolving and converging toward an optimal
solution that meets the specific needs of DNN accelerator design
within the constraints provided.

V. EVALUATION

In this section, we evaluate the effectiveness of our proposed
framework through a detailed analysis of various DNNs. We have
enhanced the functionality of the ACT framework [11] by improving
its support for on-chip components specifically designed for DNN
accelerators. Subsequently, we integrated our enhanced model into
MAESTRO, a tool used for modeling and evaluating the performance
of different dataflows in DNN architectures. This integration allows
us to assess the impact of our method across multiple DNNs

We evaluated five distinct DNNs from various domains to investi-
gate their performance and the associated embodied carbon footprint
of each solution. These included VGG16 and Alexnet for computer
vision, BERT and ALBERT for language processing, and T5 for
text processing. For each layer within these DNNs, we used our
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Fig. 3: Comparative analysis of normalized latency and embodied
carbon for DNN accelerators designed for VGG16 using different
optimization methods.

methodology to identify the architecture that provided the best Carbon
Delay Product (CDP) reward. We then assessed the performance of
these optimized architectures in terms of execution latency (measured
in cycles) and the associated embodied carbon. For comparison, we
used Digamma [2], a hardware-mapping co-optimization framework,
examining how each layer performed when optimized for different
criteria: 1) latency; 2) energy delay product (EDP); and 3) latency
area product (LAP). It is important to note that an area constraint of
0.2mm2 was set across all these optimization metrics. This number
is often used for edge-based accelerators [25] and allowed us to fairly
assess the trade-offs and efficiencies of the different optimization
strategies. Finally, the design optimized for latency was selected as
the baseline for all the following experiments.

In our experimental analysis of VGG16, presented in Figure 3,
we show the normalized latency and normalized embodied carbon
footprint under four different metrics. The results for each layer are
presented individually, while the groups of bars at the end shows
the averages across all layers. As expected, the method focused on
optimizing latency achieves the highest performance. However, our
approach demonstrates a small performance overhead of only about
5% on average. Despite this slight increase in latency, the CDP method
significantly reduces the embodied carbon footprint by 11% compared
to the baseline. The other two methods, EDP and LAP, also reduced
even more the embodied carbon footprint, with reductions up to 17%
on average compared to the baseline. Nonetheless, these benefits came
at a considerable cost to latency performance. Notably, the LAP
method increased latency by more than 40%, highlighting a substantial
trade-off between embodied carbon footprint and performance. This
analysis underscores the complexity of balancing performance with
sustainability in DNN accelerator design, particularly when adapting
to various optimization priorities.

Figure 4 shows the comparison of the DNN accelerators’s designs
under the four different optimization metrics for Alexnet. Similarly,
our method that focuses on CDP, achieves an average reduction of
18% regarding the embodied carbon footprint, with a performance
overhead of only 6%. Interestingly, the LAP method achieved even
lower embodied carbon footprint, but with a considerable performance
overhead of 31%.

In our analysis of the experimental results for ALBERT, presented



0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

1 2 3 4 5 avg

N
or

m
al

iz
ed

la
te

nc
y

Digamma-Latency
Digamma-EDP

Digamma-LAP
Proposed

0.0
0.2
0.4
0.6
0.8
1.0
1.2

1 2 3 4 5 avg

N
or

m
al

iz
ed

ca
rb

on

Layer number in Alexnet

Fig. 4: Comparative analysis of normalized latency and embodied
carbon for DNN accelerators designed for Alexnet using different
optimization methods.
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Fig. 5: Comparative analysis of normalized latency and embodied
carbon for DNN accelerators designed for ALBERT using different
optimization methods.

in Figure 5, we examined the normalized latency and normalized
embodied carbon footprint across the various optimization metrics
and methods for each layer of the DNN. Again, as expected, the
optimization method focused solely on minimizing latency had the
highest performance (lowest latency). Conversely, our CDP-based
method introduced a minimal performance overhead, averaging only
about 4%. Additionally, it also reduced the embodied carbon footprint
by 8% compared to the baseline. The other two methods, EDP and
LAP, while also reducing the embodied carbon footprint relative to the
baseline, had a more substantial impact on latency, with an average
increase of up to 15%. This happened due to their inability to simulta-
neously account for the effects that logic and memory configurations
have on both performance and embodied carbon. Overall, the results
confirm that it is feasible to design DNN accelerators for ALBERT
that significantly lower the embodied carbon footprint with only a
negligible compromise in performance, showcasing the effectiveness
of our CDP approach.
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Fig. 6: Comparative analysis of normalized latency and embodied
carbon for DNN accelerators designed for BERT using different
optimization methods.
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Fig. 7: Comparative analysis of normalized latency and embodied car-
bon for DNN accelerators designed for T5 using different optimization
methods.

Figure 6 and Figure 7 shows the results for BERT and T5
accordingly. The experimental results exhibited patterns consistent
with those observed in our previous experiments. In these cases, the
baseline configuration achieved the lowest cycle, indicating the highest
performance in terms of speed. However, our method achieved the
most advantageous balance between performance and the embodied
carbon footprint. Although the LAP method did achieve the lowest
embodied carbon footprint among the strategies tested, it came with a
considerable performance overhead. This significant increase in cycle
count under the LAP optimization illustrates the trade-offs inherent
in prioritizing environmental metrics over operational speed. Such
results underscore the effectiveness of our CDP method in providing
a more holistic approach to DNN accelerator design, optimizing both
environmental impact and computational efficiency.



VI. CONCLUSION

The rapid advancement of machine learning and the increasing
use of DNNs require the development of specialized accelerators
designed with both performance and environmental considerations in
mind. In this paper, we emphasize the importance of incorporating
carbon-aware principles into the design of these accelerators, which
extends beyond traditional performance metrics. By using a genetic
algorithm that evaluates hardware architecture, DNN mappings, and
sustainability within a specific area constraint, our approach tackles
the complex design challenges posed by numerous potential hardware
configurations. The outcomes demonstrate the feasibility of reducing
the embodied carbon footprint with negligible performance overhead,
offering an alternative approach to more sustainable ML operations.
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