
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

Balancing Throughput and Fair Execution of
Multi-DNN Workloads on Heterogeneous

Embedded Devices
Andreas Karatzas, Iraklis Anagnostopoulos, Member, IEEE

Abstract—The rise of Deep Neural Networks (DNNs) has resulted in complex workloads employing multiple DNNs concurrently. This
trend introduces unique challenges related to workload distribution, particularly in heterogeneous embedded systems. Current run-time
managers struggle to efficiently utilize all computing components on these platforms, resulting in two major problems. First, the system
throughput deteriorates due to contention on the computing resources. Second, not all DNNs are affected equally, leading to
inconsistent performance levels across different models. To address these challenges, we introduce FairBoost, a framework for efficient
and fair multi-DNN inference on heterogeneous embedded systems. FairBoost employs Reinforcement Learning (RL) to efficiently
manage multi-DNN workloads. Additionally, it incorporates a novel numerical representation of DNN layers via a Vector Quantized
Variational Auto-Encoder (VQ-VAE). Finally, it enables knowledge transfer to similar heterogeneous embedded systems without
retraining and/or fine-tuning. Experimental evaluation of FairBoost over 18 DNNs and various multi-DNN scenarios shows an average
throughput/fairness improvement of ×3.24. Additionally, FairBoost facilitates knowledge transfer from the initial platform, Orange Pi 5,
to a new system, Odroid N2+, without any retraining or fine-tuning achieving similar gains.

Index Terms—Heterogeneous embedded systems, multi-DNN workload, reinforcement learning, throughput optimization.

✦

1 INTRODUCTION

The advent of Deep Neural Networks (DNNs) has revolu-
tionized the field of embedded devices, leading to the de-
velopment of various embedded applications such as digital
assistants and AR/VR services [1]. However, these advance-
ments come with the challenge of deploying these highly
resource-demanding applications on embedded devices, of-
ten characterized by limited computational capabilities. To
address this computational barrier, platform heterogeneity
has emerged as a promising solution to augment system
performance. Nonetheless, this architectural heterogeneity
is often underutilized, introducing new barriers in edge
inference [2], [3]. Existing deep learning frameworks utilize
the CPU or the GPU but not both; thus, they cannot capi-
talize on the underlying heterogeneity. This limitation arises
from programmability issues between different computing
elements. Therefore, to efficiently utilize the inherent het-
erogeneity, deep learning frameworks must be designed to
leverage all available computing components optimally.

Furthermore, many modern services employ multiple
DNN applications concurrently to deliver more sophisti-
cated and complex services [1], [4]. For instance, in the
AR/VR domain, applications require a variety of diverse
tasks, such as object detection, object classification, hand
tracking, hand pose, and depth estimation [5], [6]. Ac-
cordingly, heterogeneous embedded devices are required to
manage multi-DNN workloads, each presenting a unique
computational profile. This scenario introduces additional

• A. Karatzas and I. Anagnostopoulos are with the School of Electrical,
Computer and Biomedical Engineering, Southern Illinois University,
Carbondale, IL 62901 USA.

Corresponding author: Andreas Karatzas (andreas.karatzas@siu.edu).

workload management challenges as resources must be
collaboratively managed to uphold the required quality of
service [7]. Naturally, assigning multiple DNNs solely to
high-performance processing elements, such as GPUs, can
result in up to ×4.6 performance reduction [8].

Another aspect for evaluating system performance in
multi-program workload is fairness in execution. Fairness
provides a comprehensive understanding of system behav-
ior, which throughput alone might not fully capture [9].
In multi-DNN workloads, considering fairness (alongside
throughput) has become particularly important due to the
interference and contention over shared resources [10]–[12].
As the performance degradation of concurrently execut-
ing DNNs is not balanced (e.g., some DNNs suffer more
significant throughput drop than others), the system be-
comes unpredictable, significantly affecting QoS [13]–[15].
The concept behind fairness, in this case, is to ensure that
all DNNs have a sufficient progress rate of execution. The
problem of balancing throughput and fairness for multi-
DNN workloads becomes increasingly prominent as state-
of-art DNNs grow in complexity, thereby augmenting the
uneven throughput among different DNNs. A way to increase
the overall throughput and fairness of multi-DNN workloads is to
utilize all the computing components synergistically. Conversely,
collaboratively utilizing computationally diverse compo-
nents (e.g., big.LITTLE CPUs, embedded GPUs) can notably
improve the overall system throughput [16].

A promising method to capitalize on the system’s ar-
chitectural heterogeneity is DNN partitioning, a process
where different parts of a DNN are allocated to different
computing components. However, due to the expansive
search space size, finding the optimal split points of DNNs
to improve system throughput and fairness is nontrivial.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 2

To distribute the multi-DNN workload efficiently across the
system to increase throughput and fairness, run-time man-
agers must: (i) group adjacent DNN layers into stages [17] to
create efficient pipelines at run-time, and (ii) efficiently map
the compiled sub-networks across the available computing
components. Nonetheless, modern DNNs encompass mul-
tiple layers, and newer heterogeneous embedded devices
comprise more diverse computing components. Therefore,
identifying the optimal partition points for a set of multi-
DNN workloads while simultaneously increasing through-
put and fairness becomes significantly complex [2]. The
complexity increases even more when trying to reduce the
decision-making time for partitions during run-time.

In this work, we propose FairBoost, a framework for
efficient and fair multi-DNN inference on heterogeneous
embedded systems. FairBoost leverages DNN layer parti-
tioning to boost the overall system throughput and fairness
of multi-DNN workloads deployed on heterogeneous em-
bedded devices. It introduces multidimensional layer rep-
resentation to accurately predict throughput and facilitate
more effective knowledge transfer via a Vector Quantized
Variational Auto-Encoder (VQ-VAE). FairBoost significantly
enriches the layer representation with a highly scalable
codebook composed of distributed embedding vectors, each
signifying the computational profile of individual DNN lay-
ers. Finding how to synergistically partition multiple DNNs
targeting both objectives is a task that spawns completely
new challenges. To that end, FairBoost features knowledge
transfer, allowing it to be ported from one board to another
without retraining or fine-tuning.

Our primary contributions are outlined as follows: 1
Layer partitioning to boost the overall system throughput
and fairness: FairBoost leverages DNN layer partitioning
to boost both the overall system throughput and fairness of
multi-DNN workloads deployed on heterogeneous embed-
ded devices; 2 Multi-dimensional layer representation:
We introduce multi-dimensional layer representation to ac-
curately predict throughput and facilitate more effective
knowledge transfer; 3 Latent-space encoding: We imple-
mented a Vector Quantized Variational Auto-Encoder (VQ-
VAE), which reduces the dimensionality of the data and,
consequently, the computational load; and 4 Formulated
the environment for the RL agent: We developed the
environment for the RL agent to facilitate effective training,
including constructing the states and actions within the
environment and devising a reward function that is de-
signed to co-optimize overall system throughput and fairness
simultaneously.

2 MOTIVATION

To demonstrate the importance of throughput and fairness
co-optimization in concurrent multi-DNN execution, we will
consider the demanding AR/VR application composed of
4 sub-DNNs presented in [4]. The application consists of:
(i) YOLO [18] for identifying objects; (ii) FaceNet [19] for
detecting faces; (iii) AgeNet [20] for discerning the age;
and (iv) GenderNet [21] for predicting the gender. If we
optimize only for system throughput, our manager will
likely prioritize less demanding DNNs, such as FaceNet,
thus boosting the workload throughput. However, this will

also negatively impact the performance of more resource-
intensive DNNs, like YOLO. This problem of multi-DNN
services was also emphasized at CES 2024 during the pre-
sentation of Qualcomm’s next-gen XR chip, which supports
up to a 4.3K resolution per eye at 90 frames per second [22].

For our own motivational example, we utilized the Or-
ange Pi 5 board [23], which features a Mali-G610 GPU and
big.LITTLE CPUs with a quad-core Cortex-A76 running at
2.4GHz and a quad-core Cortex-A55 at 1.8GHz. Regarding
the multi-DNN workload, we selected four diverse and
widely utilized DNNs: (i) AlexNet [24], (ii) MobileNet
V2 [25], (iii) ResNet-50 V2 [26], and (iv) ShuffleNet [27].

To quantify the efficiency of DNN partitioning, we de-
fine: 1 throughput T of a multi-DNN workload as the
average number of DNN inferences per second; and 2
fairness, using the Jain’s fairness index [28]. Mathematically:

T =
1

N

N∑
i=1

ticurrent, J =

(∑N
i=1

ticurrent

tiideal

)2

N ·
∑N

i=1

(
ticurrent

tiideal

)2
(1)

where N depicts the total number of DNNs in the workload
and ticurrent is inferences per second of DNN i, and tiideal
represents the throughput of DNN i when executed alone
on the embedded GPU. The closest J is to 1, the more fair the
system is. Fairness correlates to how multiple DNNs affect
each other when running concurrently. The throughput of a
single DNN decreases when other DNNs run on the GPU
simultaneously, compared to when it runs alone.

First, we mapped all DNN models on the GPU, as it is
traditionally favored for its superior computing capabilities.
This gave us a baseline performance metric to compare
with our upcoming experimental configurations. Then, we
created 200 unique DNN mappings from the same multi-
DNN workload. We randomly split the layers of the DNNs
among the three available computing components (big CPU
cluster, LITTLE CPU cluster, and GPU) and arbitrarily chose
one for each pipeline stage. An example of a mapping is:
(i) AlexNet: first 2 layers on big CPU cluster, next 2 layers on
LITTLE CPU cluster, and the remaining ones on the GPU;
(ii) MobileNet V2: first 5 layers on GPU, next 3 layers on
the LITTLE CPU cluster, and the remaining ones on the
big CPU cluster; (iii) ResNet-50 V2: first 10 layers on big
CPU cluster and the remaining on the LITTLE CPU cluster;
(iv) ShuffleNet: all layers on the GPU. For these four selected
DNNs, the total number of possible mapping configurations
is more than 4∗109. So, we only show 200 random mappings
for demonstration and reading comprehension reasons.

Figure 1 depicts the outcome for the 200 different setups
in terms of throughput (green points) and fairness (orange
points). For simplicity and readability, the displayed setups
are sorted with respect to the throughput T (green dots)
normalized over the baseline (all DNNs are executed on the
GPU). We also show the achieved corresponding fairness
index J (orange dots) for each setup. We observe that while
the baseline achieves better throughput than most setups,
there are approximately 20% different setups (∼ 40 points
illustrated as green dots above the blue line) that achieve up
to 90% better throughput in the best case. Moreover, 57%
of the configurations demonstrated better fairness when
compared to the baseline. The task of identifying an optimal

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 3

0

0.4

0.8

1.2

1.6

2

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

T

J

Different set-ups

Throughput
Fairness

Baseline (Throughput)
Baseline (Fairness)

Fig. 1: Normalized throughput and fairness for 200 random
setups on the Orange Pi 5 board. For each setup, we ran-
domly split the layers between CPU and GPU. Baseline is
the case in which all DNNs are executed on the GPU.

solution, however, presents a distinct challenge. The ideal
configuration is one that strikes an effective balance between
throughput and fairness. The orange points in the shaded
rectangle area correspond to configurations that surpassed the
baseline in both throughput and fairness.

The vastness of the solution space and the cost of ex-
ploring it are noteworthy considerations. For this partic-
ular example only, the total number of combinations is
38 + 320 + 318 + 318 ≈ 4 ∗ 109, where {8, 20, 18, 18} are
the valid partition points per DNN in our workload and
3 is the number of computing components (i.e., big CPU
cluster, LITTLE CPU cluster, and GPU). Nevertheless, this
number corresponds only to these particular DNNs, and if
we expand our choices and consider more DNN architec-
tures, those combinations yield a design space in the order
of tens of billions. Hence, the task of executing multiple
DNNs on heterogeneous embedded systems transposes into
a well-known NP-hard problem [2]. This renders simplistic
strategies such as a greedy search inadequate and necessi-
tates deploying more sophisticated exploration techniques.

3 RELATED WORK

Towards the efficient utilization of heterogeneity in em-
bedded systems, the works in [29], [30] utilize the inter-
layer parallelism of DNNs, but evaluate only for throughput
rather than fairness and hence often yield unfair pipelines.
In [13], [31], fairness is defined as the normalized progress,
representing the slowdown of concurrent multi-DNN ex-
ecution compared to each DNN’s isolated execution. Ad-
ditionally, the works in [10], [12] use a fairness metric to
measure the equal progress under multi-DNN workloads
compared to the single DNN’s isolated execution. Fairness
ranges between 0, indicating no fairness, i.e., at least one of
the concurrently executed DNNs starves, and 1, indicating
perfect fairness, i.e., all concurrently executed DNNs make
equal progress. However, none of these methods consider
DNN partitioning and multi-objective optimization. The
approach in [16] builds upon the observation that the ex-
ecution time of a CNN layer is linearly correlated to the
dimension of matrices involved in the layer operations. The
authors in [32] present another framework that utilizes the
GPU for the model’s most computationally intensive layers.

Recently, research around DNN partitioning has been
utilized to optimize the system quality of service [33]. The
framework in [3] exploits the range of mobile heterogeneous
compute units to optimize the system’s throughput. The
latency estimation model in [34] attempts to find DNN
pipelines that optimize the utilization of heterogeneous
compute units. Authors in [1] propose a design space ex-
ploration algorithm for DNN pipeline configuration that
defaults to an exhaustive search over all candidate solutions.
BAND [35] introduces a manager that attempts to find the
DNN sub-graphs with common computing component op-
erators in order to group them. Authors in [7] utilize a look-
up table (LUT) to help managers make run-time decisions.
MASA [4] is a multi-DNN manager with a layer-by-layer
processing sequence. The authors in [36] introduce DART, a
framework that uses a database to encapsulate all potential
DNN pipeline combinations to generate a mapping. More-
over, MOSAIC [37] employs DNN partitioning to distribute
DNN workloads. Its core is a linear regression model trained
in single DNN scenarios, building upon the correlation
between each layer’s input feature map dimensions and
its corresponding compute requirements. Nonetheless, this
approach does not consider all DNNs in the workload while
configuring the partition points. Thereby, MOSAIC maps
most of the workload to the highest-performing computing
element, leading to low throughput. ODMDEF [38] is an-
other framework that uses linear regression and k-nearest
neighbors to yield pipelines for multi-DNN workloads.
However, this approach requires a large number of sam-
ples to reach an acceptable model accuracy. Furthermore, it
does not consider fairness in managing the models, leading
to unfair multi-DNN pipelines. Authors in [2] propose a
framework that uses an evolutionary algorithm to tackle the
large search space. Nonetheless, it requires retraining as the
populations from previous multi-DNN workloads become
irrelevant for succeeding workloads. Moreover, the fitness
function employed in the fitting procedure is not designed
to ensure fairness within the DNNs.

TABLE 1: Qualitative comparison between existing state-of-
the-art works and FairBoost. The major differentiators of our
work compared to the state-of-art are marked with †.

Baseline RR MOSAIC [37] ODMDEF [38] GA [2] FairBoost
Features
Single-DNN
Workloads

✓ ✓ ✓ ✓ ✓ ✔

Multi-DNN
Workloads

- ✓ - - ✓ ✔

Layer Partitioning - - ✓ ✓ ✓ ✔

Multi-dimensional
Layer
Representation†

- - - - - ✔

Multi-objective
Co-Opt.†

- - - - - ✔

Latent Space
Encoding†

- - - - - ✔

Fast Training - - ✓ ✓ - ✔

Transferable - - - - - ✔

Metrics
Throughput - - ✓ ✓ ✓ ✔

Fairness - ✓ - - - ✔

Our key differences from the state-of-the-art are many-
fold: (i) we facilitate efficient design space exploration by
employing a Reinforcement Learning (RL) agent to capture

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 4

Multiple DNNs

L1 L2 L3

...
Input

L1 L2 L3Input L4

L1 L2 L3

...
Input

L1 L2 L3Input L4

L1 L2 L3

...
Input

L1 L2 L3Input L4

DNN 1

DNN n

Latent

encoding

Codebook

VQ-VAE

Encoder

Latent

encoding

Codebook

VQ-VAE

Encoder
CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU
GPU

0.820.14 0.04

Mapping

DNN 1

DNN n

Execution

GPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

DNN 1

DNN 2

DNN n

Reward

Throughput

Fairness

Reward

Throughput

Fairness

State (sk)

Action (ak)Agent

Expected value of mapping

Agent

Expected value of mapping

Layer mapped on big CPU cluster

Layer mapped on LITTLE CPU cluster

Layer mapped on GPU

L1 L2 L3

...
Input

L1 L2 L3Input L4

L1 L2 L3

...
Input

L1 L2 L3Input L4

L1 L2 L3

...
Input

L1 L2 L3Input L4

Reward (rk)

1 2 3 4

5
6

Fig. 2: Architectural overview of FairBoost.

and extrapolate the intricate interactions between the DNNs
and the underlying computing components; (ii) we de-
velop a highly scalable codebook of distributed embedding
vectors, with each vector representing the computational
profile of an individual DNN layer; (iii) FairBoost applies
a tailored reward function to co-optimize throughput and
fairness; (iv) FairBoost supports knowledge transfer from
one platform to another without any retraining and/or fine-
tuning; and (v) we effectively reduce training complexity by
leveraging action masking, eliminating invalid actions from
the action space, and enabling the RL agent to converge
faster. A qualitative comparison is presented in Table 1.

4 PROPOSED FRAMEWORK

FairBoost is designed for heterogeneous embedded systems.
For our analysis, we focus on a conventional embedded
system architecture that includes the following computing
components: 1) a high-performance CPU cluster (big CPU);
2) a low-performance CPU cluster (LITTLE CPU); and 3) an
embedded GPU. However, it’s worth noting that FairBoost
is scalable and can support a greater variety of computing
resources. Figure 2 provides an overview of FairBoost’s
architecture, which consists of six steps. These steps are
iteratively executed for each DNN layer of a multi-DNN
workload. Step 1 : In the first step, we decompose the
given models layer-wise. After identifying the layers of each
DNN, we use their characteristics to encompass elements
such as the layer type (e.g., convolution layer, fully con-
nected layer, etc.), the dimensions of the input and output
feature maps, and the dimensions of the weights tensor, and
create rich numerical DNN layer representations. Step 2 :
Once the input workload is numerically formulated, we em-
ploy the encoder module of a VQ-VAE model [39] to trans-
pose the raw data into rich latent vectors. This encoder com-
presses and distributes the information uniformly in latent
vectors. Furthermore, this process significantly reduces the
dimensionality of the input space, subsequently minimizing
our framework’s overall complexity. Step 3 : We utilize the
latent representation of the input workload as input to our

workload manager. This manager is a reinforcement learn-
ing agent powered by a ResNet-9 Convolutional Neural
Network (CNN). This module estimates the layer’s perfor-
mance on the different computing components (Q-values).
Step 4 : We use the estimated Q-values to map the layer
that is being processed in step k. The action αk with the
highest Q-value represents the computing component used
for that layer’s execution. Step 5 : In this step, we execute
the workload configured with respect to the agent’s action
trajectory on the actual embedded device. As output, we get
the corresponding throughput. Step 6 : We use throughput
and fairness to provide feedback to our agent for any given
scenario. This feedback rk allows us to assess the agent’s
performance and train it towards creating mappings that
perform better in terms of both throughput and fairness un-
der multi-DNN workloads. Once the training is completed,
FairBoost supports event-driven execution. When one or
multiple inputs trigger the execution of multiple DNNs,
FairBoost analyzes the computational characteristics of the
DNN layers and decides the splitting and mapping of them
on the available computing resources of the platform in or-
der to boost throughput and, at the same time, improve fair
execution. These computational characteristics are extracted
by loading the models’ graphs generated during model
compilation (before the actual execution). At this point, it
is important to mention that FairBoost can handle unseen
DNNs due to the VQ-VAE’s robustness, which encodes any
layer’s important information and then returns the closest
embedding from its codebook.

4.1 DNN decomposition
In this section, we formulate the input for our Vector Quan-
tized Variational Auto-Encoder (VQ-VAE). We introduce a
resilient, flexible numerical representation that depicts any
given DNN. FairBoost leverages DNN inter-layer paral-
lelism to partition any DNN model, necessitating a layer-
level input representation. Taking advantage of the linear
correlation between the dimensions of a layer’s weights
tensor and its computational complexity [37], we compile
a vector that encapsulates specifications regarding multiple

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 5

Multiple DNNs

L1 L2 L3Input

L1 L2 L3Input L4

L1 L2 L3Input

L1 L2 L3Input L4

L1 L2 L3Input

L1 L2 L3Input L4

DNN 1

DNN 2

Raw Layer Representation

Latent Layer Representation

VQ-VAE

encoder
Codebook 8 elements

L1 L2 L3Input L4

DNN 3

(i, t, ifm, ofm, w, b, a, ps)

22 elements

DNN 2

L4

Agent State sk

GClCb UDNN 1 UDNN 2 UDNN 3 UDNN 4 UDNN 5

DNN 1 L3 +

DNN 2 L3

DNN 1

L1

DNN 1

L2

DNN 2

L4

0

DNN 2

L2

DNN 2

L1

DNN 2

L4

DNN 3

L3

DNN 3

L2

DNN 3

L1
0

0

0

00

0 0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

1 2

3

4

Fig. 3: Input formulation for our Rainbow-DQN.

tensors describing any given DNN layer. Contrary to pre-
vious methods [2], [8], our approach formulates the input
into multiple dimensions, thereby enriching the layer repre-
sentation and enabling more efficient multi-DNN pipelines
in the next steps. For each DNN j, our proposed input 22-
dimensional vector comprises each layer’s characteristics.
Furthermore, ifm, ofm, and w are 4-dimensional tensors,
that correspond to: (i) The batch size; (ii) The number of
channels; (iii) The feature map height; and (iv) The feature
map width. Finally, ps is a 6-dimensional vector represent-
ing the layer’s pad-stride information.

Lj
i = i t ifm ofm w b a ps

()
Layer index
of DNN j

Input
feature map

Weights
tensor

Type of
activation

Layer
type

Output
feature map Number of

biases

Pad-stride
information

(2)

The rationale behind this approach is to condition our
agent on both the complexity and size of the DNNs in the
workload. The input and feature map (ifm), output feature
map (ofm), weights tensor (w), number of biases (b), and
pad-stride information (ps) allow the agent to know the
complexity of a layer. Concurrently, attention to the layer
index (i) informs the agent of the depth of the DNN.

4.2 Latent layer representation

FairBoost utilizes a Vector Quantized Variational Auto-
Encoder (VQ-VAE) [39], compiled by 1D convolutional lay-
ers. In this study, our analysis focuses on the following
subset of parameters: (i) the encoder module, and; (ii) the
codebook associated with the learned latent space. Figure 3
depicts the input formulation for our Rainbow-DQN.

The encoder transposes the raw numerical representa-
tions Lj

i of layer i in DNN j into a latent representation
Zj
i . More specifically, FairBoost applies quantization to the

distribution of q(z|x), employing discrete latent variables to
formulate the specified multi-DNN workload. This strategy
not only effectuates significant dimensionality reduction but
also amplifies the representation of valuable vector features
in the latent space [40]. This refined approach significantly
improves the precision and efficiency of the workload man-
ager, thereby underlining the integral role of the VQ-VAE
module in our framework. The mapping process from the

X 2D Conv

F(X)

+

X

X 2D Conv

F(X)

+

X

X 2D Conv

F(X)

+

X

ResNet-9 backbone

Agent Input

sk

Agent Output

ResBlock

2 31 Rainbow DQN with ResNet-9 based backbone

2D Conv

F(X)

X 2D Conv

F(X)

+

X

X 2D Conv

F(X)

+

X

2D Conv

F(X)

ResBlock

Value

Stream

Advantage

Stream

vk

0.14

0.04

0.82

Argmax

GPU

DNN 2

L4

Fig. 4: High-level overview of our Rainbow-DQN.

decomposed vector layer representation Lj
i into a sequence

of discrete latent variables Zj
i is facilitated by: (i) a 1D

convolutional layer that extracts the high-level features, and;
(ii) a block of 9 1D convolutional residual layers that capture
the lower-level features. Within the multi-DNN workload,
the raw numerical representation Lj

i of layer i of DNN j is
iteratively fed into our encoder. The output of this process
is a latent matrix with dimensions

(∑M
j |Lj |

)
×8, where M

denotes the total number of models within the multi-DNN
workload, |Lj | represents the number of layers in the j-th
DNN of the workload, and 8 signifies the dimensions of the
latent space. The choice of 8 for the latent space dimensions
was not arbitrary. We conducted extensive experimentation
with various latent vector dimensions, as demonstrated later
in Section 5. Our observations suggest that a dimension of 4
results in an excessively compressed representation, signify-
ing a substantial loss of information during the compression
process, which is later translated into a performance drop on
the agent’s part. Conversely, a dimension of 16 introduces
additional computational requirements for handling extra
parameters, but the corresponding optimization benefits
are minimal. Therefore, 8 was determined to be the most
appropriate choice, striking a balance between sufficient
data encoding accuracy and computational efficiency.

The VQ-VAE plays a crucial role in the dimensionality
reduction of our framework, providing a vital benefit in
terms of computational efficiency. Notably, the VQ-VAE
greatly prunes the agent’s number of Multiply-Accumulate
(MAC) operations. Without the VQ-VAE, the agent requires
≈ 14B MAC operations for inference. However, imple-
menting VQ-VAE brings this number down to ≈ 2B. This
equates to more than ×7.5 reduction in computational
complexity, freeing up significant processing power, thus
enabling a more efficient and compute-friendly framework.

4.3 Agent

In this work, we employ a Rainbow-DQN [41] agent to
find optimal mappings. We assume that there is a discrete
number of computing components for any given embedded
device. In our case, these elements are the big.LITTLE CPU
clusters and the embedded GPU. Hence, our problem oper-
ates within a discrete action space, which renders a value-
based agent suitable. Consequently, we utilize the Rainbow
algorithm, a state-of-the-art Q-learning algorithm. Figure 4
depicts a high-level overview of our Rainbow-DQN agent.

We develop a lightweight 9-layer convolutional neu-
ral network (CNN) model that inherits from the widely

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 6

Algorithm 1 Fairness and throughput co-optimization

1: function REWARD(
−−−−−→
Tcurrent,

−−−→
Tideal, α, β, γ)

2: ratios← STDDEV(i=0
N (

ticurrent

tiideal
) ∗ 100)/50

3: fairness← 2 ∗ SIGMOID(−α ∗ (ratios− 0.5))− 1

4: tachieved ← SUM(Ni=0t
i
current)

SUM(Ni=0t
i
ideal)

5: throughput← 2 ∗ SIGMOID(γ ∗ (tachieved− 0.5))− 1
6: r ← (1− β) ∗ fairness+ β ∗ throughput
7: return r
8: end function

adopted ResNet DNN family [42]. This model, while main-
taining the core principles of the ResNet architecture, is
designed with an emphasis on computational efficiency
and training speed-up. To that end, our custom ResNet-
9 is characterized by a minimal size of ≈ 11M trainable
parameters, thereby ensuring our framework’s ability to
learn the required data patterns rapidly. Finally, in our
model’s architecture, we incorporated 512 neurons within
the noisy linear layers to ensure the propagation of valuable
low-level features detected by the convolutional layers.

4.4 Environment
To deploy the Rainbow-DQN agent described in subsec-
tion 4.3, we define an environment composed of states, ac-
tions, and rewards. The agent operates in this environment
by selecting an action, which is equivalent to choosing a
computing component to process a specific DNN layer at
each time step k. The agent receives an observation matrix
S, structured such that columns are configured into eight-
element block matrices:

Sk =
(
Cb Cl G UDNN1 . . . UDNN5

)
(3)

where Cb, Cl, and G represent the big CPU cluster, the
LITTLE CPU cluster, and the embedded GPU, respectively.
Each UDNNi

represents a queued DNN, where i varies from
1 to 5. The matrix can be further extended to support more
DNNs, but due to the limited computational resources of
our embedded device, we restrict our analysis to five DNNs.
Figure 3 depicts this observation matrix in Step 4 . Matrix Sk
provides a snapshot of the environment state at any specific
time k. Each row corresponds to the latent representation
Zj
i of layer i of DNN j. Each column corresponds to either

a computing component or a queued DNN. This encoding
gives our agent a holistic view of the environment’s current
state, enabling more efficient decision-making.

To train our agent in the aforementioned environment,
we conceptualize a reward function that continuously in-
tegrates both aspects and synergistically optimizes them.
This reward function optimizes a pair of objectives: (i) max-
imize average throughput in a multi-DNN workload; and
(ii) maximize the fairness in resource distribution amongst
the DNNs. The proposed reward function is described in
Algorithm 1. Optimizing for a composite objective requires
careful mathematical formulation because of the differences
in measurement and scale amongst the utilized metrics, i.e.,
throughput and fairness. To that end, we incorporated the
ideal throughput for each DNN, which can be calculated by
running any given model for a small period of time alone on

0.0 0.2 0.4 0.6 0.8 1.0
Throughput

0.2
0.4
0.6
0.8
1.0

Fa
ir

ne
ss

0
0.2
0.4
0.6
0.8
1

Fig. 5: Heatmap of our composite reward function.

the GPU, the highest-performing computing component on
our platform. By introducing the ideal throughput in tan-
dem with the currently achieved throughput of any given
mapping, we were able to calculate ratios of performance
for each DNN and thus guarantee a vector of numbers in the
range of [0, 1]. After normalizing our values, we are ready
to quantify throughput and fairness: 1 For throughput:
We sum the achieved throughput for each DNN in the
workload given the mapping and divide it by the sum of
ideal throughputs of these DNNs. We pass the result of line
4 into the expression in line 5. In this expression, we first
zero-mean tachieved, then scale it using γ, and finally pass
it through sigmoid. 2 For fairness: We can evaluate the
agent’s performance in terms of fairness using the standard
deviation of Q. The reason behind opting for std instead
of Jain index is that we observed that Jain index is more
aggressive towards fairness than std, which poses a sig-
nificant challenge for the agent to eventually converge. By
utilizing a metric more “robust” to unfairness, our agent
could quickly detect the hidden patterns in its experiences
regarding fairness. 3 Co-optimization of throughput and
fairness: If we opt for a metric that evaluates the agent’s
performance with respect to throughput, then our agent
will yield mappings that completely disregard fairness.
Similarly, if we only leverage fairness to evaluate our
agent’s performance, then the resulting mappings would
completely disregard throughput, leading to a suboptimal
multi-DNN manager. For example, a 4-DNN mapping that
yields [0, 0, 0, 0] throughput is amongst the fairest mappings
that could exist for that workload, but starves all the DNNs
in the workload. To that end, we synergistically combine
throughput and fairness into a weighted sum in line 6 of our
algorithm. An energy distribution of our composite reward
function is given in Figure 5.

4.5 Training acceleration
Our agent rapidly converges within 20K training steps,
representing ×1, 000 acceleration in training compared to a
conventional reinforcement learning (RL) agent in an Atari
2600 environment, which necessitates over 20M steps to
converge [41]. We achieved this remarkable enhancement by
applying action masking [43], which efficiently refines the
agent’s focus onto relevant data patterns. Action masking is
the process of zeroing the logits associated with impossible
actions, ensuring that such actions are not selected during
the decision-making process. In the case of a value-based
algorithm, an action is selected based on the maximum
estimated value of the action-value function Q(s, a). Math-
ematically, this is formulated in Equation 4.

a = argmax
a∈A

Q(s, ·) (4)

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 7

where, s represents the current state, A the action space,
and a the action taken. The agent selects the action that
maximizes the Q value for the given state. When the action
mask is applied, the Q-values associated with the impossi-
ble actions are set to negative infinity (−∞). This essentially
removes these actions since their Q-values can never be the
highest. Consequently, this leads to more efficient training
as the agent focuses on viable actions [44].

Action masking results in efficient data transfer mini-
mization in multi-DNN workloads. As aforementioned, our
heterogeneous embedded device environment comprises
three distinct computing components: (i) a big CPU cluster;
(ii) LITTLE CPU cluster; and (iii) an embedded GPU. The
available actions represent the selection of these devices.
The action masking strategy we employ is guided by the
sequence of device selections made by the agent.

The mathematical formulation for building the mask in
our environment is as follows. Let D = {d1, d2, d3} denote
the set of devices, with d1 representing the big CPU cluster,
d2 the LITTLE CPU cluster, and d3 the embedded GPU. Let
ak denote the action at time k, which is equivalent to the
device selected by the agent at that time. If the agent decides
to utilize the same device at time k + 1 as in time k, i.e.,
ak+1 = ak, then the action mask, M , remains the same as
in the previous step. Mathematically, this is represented as
Mk+1 = Mk. On the other hand, if the agent opts to switch
to a different device at time k + 1, i.e., ak+1 ̸= ak, then the
action mask is updated to exclude the device selected at time
k. Mathematically, this can be represented as Mk+1 = D\ak.

Another important mechanism for training acceleration
is our efficient memory mechanism. This mechanism is
designed to retain records of all previously encountered
queries. By preserving each DNN mapping, the system
can leverage identical or permutation-equivalent mappings
in future steps. In such instances, the memory efficiently
retrieves the already inferred results. The introduction of
this memory mechanism contributes significantly to the
training speed-up. With this optimization, there is no longer
a constant requirement to submit the agent’s compiled DNN
workload to the utilized embedded device for evaluation.
Instead, we can utilize pre-computed system throughput
results and add small amounts of white noise to circum-
vent the potential overestimation of Q-values. This practice
demonstrates the principles of dynamic programming by
intelligently reusing previously computed results to avoid
redundant computations. Consequently, this mechanism re-
duces the training time by ×5.

4.6 Knowledge transfer

The time-intensive training process involved in our agent’s
design necessitates a mechanism for the seamless transfer of
knowledge from one platform to another. FairBoost utilizes
OpenCL and the ARM Compute Library [45]. This inher-
ently aligns our system with embedded devices equipped
with ARM CPUs and ARM Mali GPUs. Boards in this family
have significant differences regarding the number of cores,
memory size, frequencies, and GPU computational power.
These differences remarkably impact the performance of
multi-DNN workloads. It’s important to clarify that the
adaptability of FairBoost is a distinct advantage over the

other state-of-art methods, which require re-training or fine-
tuning to function optimally on different boards.

In our experiments, we used the Orange Pi 5 board as
the initial training platform for the agent. We then trans-
ferred the agent’s learned knowledge to the Odroid N2+
board. Both boards are equipped with a big.LITTLE CPU
architecture and a Mali GPU. It’s important to mention that
the Odroid N2+ differs from the Orange Pi 5 in a few ways.
For example, the Odroid N2+ has 2 LITTLE cores, whereas
the Orange Pi 5 has 4. Additionally, the Odroid N2+ comes
with 4 GB of RAM, in contrast to the 16 GB found in the
Orange Pi 5. Despite these hardware differences, FairBoost
was robust enough to be transferred to the Odroid N2+
without requiring any retraining or fine-tuning.

The robustness of our methodology is largely attributed
to the incorporation of Reinforcement Learning (RL) as
the foundational framework. Specifically, our lightweight
ResNet-9 equips our workload manager with the robustness
needed to handle changes in the dataset, which can be
interpreted as “noise” injected by the variations between
heterogeneous embedded devices [46]. Furthermore, the
combination of the codebook’s reduced size and the redun-
dancy in the parameters of the VQ-VAE encoder further
equips our framework with resilience against data drifts
during platform switches. The synergy of these design el-
ements renders our framework robust and enables knowl-
edge transfer from one heterogeneous embedded system to
another with minimal performance loss.

5 EXPERIMENTAL EVALUATION

In this section, we demonstrate the strengths of FairBoost in
terms of (i) VQ-VAE encoder training (Sec. 5.1); (ii) agent
learning (Sec. 5.2); (iii) throughput/fairness comparison
(Sec. 5.3); (iv) knowledge transfer (Sec. 5.4); and (v) run-
time performance (Sec. 5.5). We evaluate several multi-DNN
workloads on the Orange Pi 5 development board. The
Orange Pi 5 features a Mali-G610 GPU and big.LITTLE
CPUs with a quad-core Cortex-A76 at 2.4GHz and a quad-
core Cortex-A55 at 1.8GHz. FairBoost is implemented in
PyTorch [47] and OpenAI Gym [48]. Additionally, OpenCL
and ARM Compute Library [45] are employed to develop
the DNN pipelines on the embedded device.

5.1 VQ-VAE Encoder Training
Regarding the training of our VQ-VAE model, we per-
formed DNN layer decomposition as elaborated in sub-
section 4.1. We considered 18 commonly utilized DNNs:
(i) AlexNet, (ii) GoogleNet, (iii) Inception-ResNet V2,
(iv) Inception V3, (v) Inception V4, (vi) LeNet, (vii) Mo-
bileNet, (viii) MobileNet V2, (ix) ResNet-12, (x) ResNet-
50, (xi) ResNet-50 V2, (xii) ResNeXt-50, (xiii) ShuffleNet,
(xiv) SqueezeNet, (xv) SSD with MobileNet backbone,
(xvi) YOLO V3, (xvii) VGG-16, and; (xviii) VGG-19.

After extracting the raw layer representation, we gen-
erated our dataset, containing a total of 1, 937 samples. The
dataset is then partitioned into training and test subsets with
0.9 split ratio. Given the limited number of samples in our
dataset, we opted for K-Folds cross-validation with K = 10
to augment the dataset and consequently optimize the VQ-
VAE performance. We selected Mean Squared Error (MSE)

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 8

0.0
0.7
1.4
2.1
2.8
3.5

0 10 20 30 40 50 60 70 80 90 100V
al

id
at

io
n

Lo
ss

Dim. 2
Dim. 4

Dim. 8
Dim. 16

Dim. 32

3.0

6.0

9.0

12.0

0 10 20 30 40 50 60 70 80 90 100

C
od

eb
oo

k
Pe

rp
le

xi
ty

Epoch

Fig. 6: VQ-VAE codebook validation loss and perplexity
function latent dimension.

as a criterion for the VQ-VAE training. To decide upon the
codebook dimension, we performed evaluations of the VQ-
VAE across various latent space dimensions. Specifically, we
tested the dimensions of (i) 2; (ii) 4; (iii) 8; (iv) 16; and
(v) 32. We chose powers of 2 for the latent space dimensions
to ensure numerical stability over the output feature map
dimensions of our Rainbow DQN agent’s online model
and streamline this hyperparameter’s tuning. The results
regarding validation loss and perplexity of the codebook for
each latent dimension setting are depicted in Figure 6. We
observe that the latent dimension balancing data encoding
accuracy and computational efficiency is 8. The validation
loss in a VQ-VAE module measures prediction error during
evaluation, with lower values indicating improved perfor-
mance. The codebook’s perplexity curve depicts the diver-
sity and distribution of embedding vectors, where a higher
perplexity indicates a more efficient use of the codebook.

5.2 Agent Learning Strategy
The agent was trained on a machine equipped with an
NVIDIA RTX 2070 GPU. In the initial stages of the training
process, we employ the Kaiming initialization method to
uniformly distribute the parameters of the online Q-value
estimator [49]. This strategy effectively models the recti-
fiers of our custom ResNet-9 backbone, which powers the
Rainbow-DQN agent, thereby contributing to the agent’s
rapid convergence. We build on the existing empirical work
in the RL domain and maintain the number of stacked
frames at 4. We also normalize the state matrix within
[0, 1]. As Rainbow’s components are associated with various
hyper-parameters, hyper-parameter tuning is a significant
combinatorial challenge. Given the enormity of the hyper-
parameter space, conducting an exhaustive search is not fea-
sible. A detailed breakdown of FairBoost’ hyper-parameters
can be found in Table 2.

Following the exploration phase comprising 10K steps,
the agent continued training for an additional 20K steps.
As we mentioned in Section 4, we significantly accelerate
our agent’s training process. This refers to the number
of steps our agent experienced during training and does
not directly represent time. Specifically, the training overall
took approximately 10 days to complete. While standard
RL frameworks often require training involving millions

TABLE 2: Hyper-parameter list for our Rainbow-DQN
agent.

Parameter Value

Min history to start learning 10K steps
Adam learning rate 1 × 10−3

Exploration ϵ 0

Noisy Nets σ0 0.5

Target Q-value estimator update period 500 steps
Adam ϵ 1.5 × 10−4

Prioritization type proportional
Prioritization exponent ω 0.5

Prioritization importance sampling β 0.4 → 1.0

Multi-step returns n 3

Distributional atoms 51

Distributional min/max values [−21, 21]

Gradient clipping by L2 norm 5

of steps, we dropped this required number of steps and
accelerated our training by a factor of about ×1, 000. The
performance of the agent is evaluated for both throughput
and fairness. To that end, the environment is configured to
interact directly with the Orange Pi 5 development board
and execute the actions determined by the agent. Figure 7
shows the reward curve during the agent’s training. We
also show the training progress of an agent without action
masking and caching, which demonstrates an undesirably
unstable behavior from step to step, hitting both negative
and positive rewards, and ultimately cannot converge. Each
point holds 50 environment steps. Lines represent the min-
imum (“Min”), maximum (“Max”), and mean (“Average”)
rewards, offering insights into the reward fluctuations and
overall agent’s learning progress.

−1.2
−0.8
−0.4

0
0.4
0.8
1.2

0 ∗ 100 4 ∗ 103 8 ∗ 103 12 ∗ 103 16 ∗ 103 20 ∗ 103

R
ew

ar
d

Step

Min w/o Opt.
Max w/o Opt.

Average w/o Opt.

Min
Max

Average

Fig. 7: Reward evolution over 20K steps, aggregated into
4K points. The training for the agent w/o any optimizations
took about 50 days without converging.

5.3 Throughput and Fairness comparison

We deploy three key metrics to demonstrate the optimiza-
tion in throughput and fairness. Table 3 provides the math-
ematical formulations associated with each one of them:

1) Normalized Throughput: The throughput of a multi-
DNN workload, as defined in equation 1, over the
baseline throughput. As baseline throughput, we define
the achieved average throughput of all DNNs when all
of them are executed on the GPU.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 9

2) Jain Fairness Index (J): The Jain Fairness Index [28]
provides a quantitative measure to assess the fairness
in performance among DNNs. It is defined in the range
of [0, 1]. A value of 1 signals perfect fairness, indicating
that the performance of all DNNs degraded equally in
proportion relatively to their ideal throughput values.

3) Overall Gain (O): This metric is devised to provide
insights into the trade-off between throughput and
fairness for each manager. A higher value indicates a
superior balance between the two objectives.

TABLE 3: The evaluation metrics along with their formal
definitions. N is the total number of DNNs in the workload.
ticurrent is inferences per second of DNN i when executed
concurrently with the rest of the DNNs in the mix and tiideal
represents the throughput of DNN i when executed alone
on the embedded GPU.

Metric Mathematical Definition

Workload Throughput Tw = 1
N ×

∑N
i=1 ticurrent

Normalized T Tw
Tbaseline

Jain Fairness Index J =

(∑N
i=1

ticurrent
tiideal

)2

N·
∑N

i=1

(
ticurrent
tiideal

)2

Overall Gain O = T × J

We compared our framework against six other ap-
proaches: (i) the common approach, which maps all DNNs
on the GPU, the highest-performing computing component
(also used as the baseline); (ii) a linear regression-based
algorithm adopted by MOSAIC [37]; (iii) the ODMDEF [38],
utilizing both a linear regression-based method and a k-
NN classifier as detailed in their experimental assessment;
(iv) the Genetic Algorithm (GA) presented in [2]; (v) a
round-robin variation that cycles through DNNs and stat-
ically assigns them on the big CPU cluster, named RR
(CPU); and (vi) a round-robin variation that cycles through
DNNs and statically assigns them on the GPU, named RR
(GPU). We included Round-robin scheduling to expand our
analysis. Round-robin scheduling assigns an equal, fixed
amount of processing time to each DNN in the workload.
The scheduler then cycles through these DNNs, providing
each with its allocated time quantum before saving its state
and proceeding to the next. This method is particularly
challenging for complex and long-running DNNs, as it
requires efficient state management to allow each DNN to
resume processing seamlessly. The rationale behind a CPU
variation of round-robin and a GPU one was the difference
regarding memory overhead between the two instances.

Figure 8 depicts the memory overhead regarding DNNs
mapped on either the CPU or GPU and how many seconds
were left for them for inference out of 30 seconds. Regarding
DNNs mapped on the GPU, we observe that most of the
time was used to load the weights and data on the memory,
thus introducing memory overhead. On average, when a
model was entirely loaded on the CPU, the memory over-
head was 2 seconds. This overhead is×9.5 higher in the case
of GPU. To that end, we studied a round-robin variation that

0
5

10
15
20
25
30

AlexNet
InceptionV4

MobileNetV2
SqueezeNet

VGG19M
em

or
y

ov
er

he
ad

&
In

fe
re

nc
e

ti
m

e
in

se
co

nd
s CPU Memory Overhead

CPU Inference Time
GPU Memory Overhead

GPU Inference Time

Fig. 8: Memory overhead over Inference time ratio for DNNs
mapped entirely either on CPU or GPU.

utilizes only the CPU (both the big and LITTLE clusters)
and a second one that utilizes only the GPU. To perform
an in-depth study, we created random mixes of multi-
DNN workloads. Specifically, we considered mixes of 3,
4, and 5 concurrent DNNs. We also attempted to evaluate
mixes of 6 concurrent DNNs, but the workload exerted an
overwhelming strain on both the memory controller and the
computational resources, rendering the board unresponsive.
We utilized the Orange Pi 5 board, which features a Mali-
G610 GPU and big.LITTLE CPUs with a quad-core Cortex-
A76 running at 2.4GHz and a quad-core Cortex-A55 at
1.8GHz.

0.0

0.8

1.5

2.2

3.0

1 2 3 4 5 6 7 8 9 10 Avg

N
or

m
al

iz
ed

T

Baseline
RR (CPU)
RR (GPU)

MOSAIC [37]
ODMDEF [38]

GA [2]

FairBoost

0.0
0.2
0.5
0.8
1.0

1 2 3 4 5 6 7 8 9 10 Avg

Fa
ir

ne
ss

J

0.0
1.0
2.0
3.0
4.0
5.0

1 2 3 4 5 6 7 8 9 10 AvgO
ve

ra
ll

ga
in

O

Fig. 9: Comparison of (a) Normalized Throughput T; (b) Jain
fairness index J; and (c) Overall throughput/fairness gain O

for ten different mixes. Each mix consists of 3 concurrent
executing DNNs, selected randomly.

Mixes of 3 DNNs: Figure 9 depicts the experimental
results for the case of ten random workload mixes, each one
consisting of 3 concurrent DNNs. In Figure 9(c), we observe
that FairBoost improves on average the overall gain (O) by
×2.85, 54.8%, 93.2%, ×0.92, ×0.91, and ×0.47 compared
to the baseline, RR (CPU), RR (GPU), MOSAIC, ODMDEF,
and the GA, respectively. This enhancement can be further
analyzed for throughput and fairness. To that end, Fair-

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 10

Boost surpasses the GA in throughput by 5.6% on average,
as shown in Figure 9(a). Meanwhile, the GA significantly
compromises the fairness metric, which becomes evident
in mixes 7 and 10, where GA shows a preference for a
single DNN. This negatively impacts fairness, as shown
in Figure 9(b), demonstrating the inherent drawback of
GA in balancing fairness against throughput. In contrast,
FairBoost delivers a superior fairness performance across
all mixes, leading to a greater overall gain. This is attributed
to FairBoost’s balanced incorporation of both throughput
and fairness, while all the other frameworks emphasize
throughput over fairness. Specifically, FairBoost achieves
96.2% Jain fairness score, while the baseline, RR (CPU),
RR (GPU), the MOSAIC, the ODMDEF, and the GA, scored
59%, 91.6%, 87.4%, 64%, 61.4%, and 69% respectively in
that category. While round-robin scheduling provides equal
time to each DNN (fair in terms of execution time), it
does not lead to efficient throughput. The context-switching
overhead, crucial for saving and loading states of DNNs, is
particularly burdensome for larger models, thus reducing
the system’s overall computational throughput. Therefore,
FairBoost efficiency distributes the available resources even
in complex scenarios involving multiple DNNs, particularly
in lighter workloads where optimal partition points are
easier to identify. It’s noteworthy that running 3 concurrent
DNNs doesn’t saturate the board’s computational resources,
allowing for comparable throughput solutions across frame-
works. This is more apparent in mixes 4 and 8, constituted
mainly of lightweight DNNs like ShuffleNet, ResNet-12,
SqueezeNet, AlexNet, and GoogleNet.

0.0

0.8

1.5

2.2

3.0

1 2 3 4 5 6 7 8 9 10 Avg

N
or

m
al

iz
ed

T

Baseline
RR (CPU)
RR (GPU)

MOSAIC [37]
ODMDEF [38]

GA [2]

FairBoost

0.0
0.2
0.5
0.8
1.0

1 2 3 4 5 6 7 8 9 10 Avg

Fa
ir

ne
ss

J

0.0
2.0
4.0
6.0
8.0

10.0

1 2 3 4 5 6 7 8 9 10 AvgO
ve

ra
ll

ga
in

O

Fig. 10: Comparison of (a) Normalized Throughput T; (b)
Jain fairness index J; and (c) Overall throughput/fairness
gain O for ten different mixes. Each mix consists of 4
concurrent executing DNNs, selected randomly.

Mixes of 4 DNNs: We further tested the robustness
of FairBoost under increased workload with mixes of 4
concurrent DNNs, as shown in Figure 10. Despite the
increased workload, FairBoost consistently outperformed

the baseline, RR (CPU), RR (GPU), MOSAIC, ODMDEF,
and the GA in terms of overall throughput/fairness gain,
demonstrating ×3.26, ×2.1, ×3.7, ×2.52, ×2.26, and ×0.53
better O respectively, as illustrated in Figure 10(c). This
underscores the limitations of the baseline, MOSAIC, and
ODMDEF methods, which led to excessive GPU utilization.
Furthermore, regarding RR (CPU) and RR (GPU), it becomes
more apparent that the underlying heterogeneity is not fully
leveraged, resulting in an overall average gain that is up to
×3.7 worse. Both GA and FairBoost, in contrast, exhibited
better utilization of the platform’s computing components
and improved system throughput T. Furthermore, FairBoost
ties with the GA in terms of throughput, as shown in
Figure 10(a). Figure 10(b) reveals the shortcomings of GA
in mixes 1, 2, and 10, where it unfairly manages one DNN,
adversely affecting the others. FairBoost maintained fair
throughput distribution among DNNs, which is translated
in 81.8%, 67.6%, 89.8%, and 64.3% better J fairness com-
pared to the baseline, MOSAIC, ODMDEF, and the GA, re-
spectively. RR (CPU) demonstrates 5% better Jain Index than
FairBoost, while RR (GPU) is 27.3% less fair than FairBoost.
The difference in fairness between the two RR instances
is attributed to context switching. Specifically, for the GPU
instance of RR, there is a significant memory overhead, lead-
ing to poor multi-DNN mappings. The potent advantage
of FairBoost lies in its ability to comprehend the intricate
relationships among various factors involved in efficient
resource utilization, as opposed to linear regression-based
frameworks, such as MOSAIC and ODMDEF. A noticeable
exception occurs in mix 7, where the GA achieves better
fairness than FairBoost. However, FairBoost retains a higher
overall throughput/fairness gain, as shown in Figure 10(c).
Interestingly, all compared approaches exhibit improved
fairness over the case of mixes of 3 concurrent DNNs. This
improvement is attributed to the increased complexity of
the workload, which necessitates more resource allocation
and, consequently, reduces individual DNN throughput. In
other words, the state-of-the-art approaches yield pipelines
that saturate the platform’s resources, leading to a uniformly
decreased DNN throughput.

Mixes of 5 DNNs: Advancing to the more demanding
scenario of 5 concurrent DNNs, the limitations of the em-
bedded device become clear. Even though ODMDEF, GA,
and FairBoost effectively used the system’s varied hard-
ware components, managing the increasingly demanding
workloads became significantly more difficult. The simulta-
neous execution of five DNNs strained the computational
resources, culminating in throughput saturation. This is
evident in Figure 11(a), where all frameworks exhibit similar
behavior in terms of throughput. Despite these constraints,
Figure 11(c) shows that FairBoost exhibited impressive
resilience with its deep reinforcement learning approach,
outperforming the other methodologies in overall through-
put/fairness gain. Specifically, FairBoost outperformed the
baseline, RR (CPU), RR (GPU), MOSAIC, ODMDEF, and
GA by factors of ×3.61, ×1.99, ×7.27, ×2.08, ×0.99, and
×0.55 in O, respectively. Moreover, under such demanding
circumstances, FairBoost managed to yield relatively fair
multi-DNN pipelines. This was manifested in a slightly
reduced throughput T, but significantly enhanced fairness J,
as shown in mixes 1 and 10 in Figure 11(b). In these mixes,

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 11

0.0
0.4
0.8
1.2
1.6
2.0

1 2 3 4 5 6 7 8 9 10 Avg

N
or

m
al

iz
ed

T
Baseline

RR (CPU)
RR (GPU)

MOSAIC [37]
ODMDEF [38]

GA [2]

FairBoost

0.0
0.2
0.5
0.8
1.0

1 2 3 4 5 6 7 8 9 10 Avg

Fa
ir

ne
ss

J

0.0
1.0
2.0
3.0
4.0
5.0
6.0

1 2 3 4 5 6 7 8 9 10 AvgO
ve

ra
ll

ga
in

O

Fig. 11: Comparison of (a) Normalized Throughput T; (b)
Jain fairness index J; and (c) Overall throughput/fairness
gain O for ten different mixes. Each mix consists of 5
concurrent executing DNNs, selected randomly.

the GA preferentially managed a single DNN, boosting the
system throughput at the cost of a significant decline in
fairness. FairBoost also achieved superior fairness compared
to the baseline, MOSAIC, ODMDEF, and GA, showing
improvements by factors of ×2.41, ×0.63, ×0.73, and ×0.5
respectively, as shown in Figure 11(b). Compared to RR
(CPU), FairBoost achieved 26% lower Jain Fairness index.
However, it is evident from Figure 11(a) that RR(CPU)
starves most of the DNNs from resources, ultimately leading
to ×2.44 worse average normalized throughput T. These re-
sults demonstrate FairBoost’s properties in managing highly
complex, multi-DNN workloads. Despite these highly de-
manding workloads, FairBoost managed to make intelligent
decisions and manage the workload to yield better overall
throughput and fairness.

5.4 Knowledge transfer evaluation
Our framework’s capability to transfer knowledge was
evaluated by porting the pre-trained agent from Orange
Pi 5 board to the Odroid N2+ development board. The
transferred agent was subjected to the same mixes as de-
tailed in Section 5.3. This approach allowed us to directly
compare the performance of the transferred agent on the
target platform, with no additional retraining or fine-tuning
against the source platform, thus testing the robustness of
our system under diverse conditions.

Figure 12 depicts the performance of the transferred
agent in terms of overall throughput/fairness gain. Remark-
ably, the transferred agent demonstrated a slight average
performance reduction of only 5.7% compared to the agent
trained on the source platform. The effectiveness of our
method is largely due to the VQ-VAE module, which ex-
cels at identifying underlying data patterns. This enables
the framework to smoothly adapt to any data variations

0.0

0.4

0.8

1.2

1 2 3 4 5 6 7 8 9 10 Avg

O

Mixes with 3 concurrent DNNs

Orange Pi 5 Odroid N2+

0.8
0.9
1.0
1.1
1.2

1 2 3 4 5 6 7 8 9 10 Avg

O

Mixes with 4 concurrent DNNs

0.8
0.9
1.0
1.1
1.2

1 2 3 4 5 6 7 8 9 10 Avg

O

Mixes with 5 concurrent DNNs

Fig. 12: Comparison of normalized overall gain O, after
transferring the agent from Orange Pi 5 (source platform) to
the Odroid N2+ (target platform) without retraining or fine-
tuning considering (a) 3 concurrent DNNs; (b) 4 concurrent
DNNs; and (c) 5 concurrent DNNs;

that might occur when moving it to a new platform. The
Rainbow-DQN agent also plays a crucial role by leveraging
NoisyNets to explore its environment, thereby adapting to
scenarios with minor variations in data. Importantly, the
transferred agent is efficient in terms of resource use, saving
considerable computational power and time that would
have been spent on additional training. This result high-
lights the effectiveness of our knowledge transfer method,
establishing it as a strong and practical solution for handling
complicated workloads involving multiple DNNs across
diverse heterogeneous embedded systems.

To further demonstrate the effectiveness of knowledge
transfer we have performed additional experiments on the
Odroid N2+ board. These experiments are particularly note-
worthy because: (i) we conducted a direct comparison of
throughput and fairness metrics across different scenarios.
(ii) the workloads used were new to the estimator and had
not been previously evaluated on the Orange Pi 5. (iii) our
method was applied without any re-training or fine-tuning.
Through these steps, we aim to provide a clearer and more
robust evaluation of knowledge transfer, thereby addressing
the concerns raised about the suitability of our chosen
metric. We created 9 previously unseen multi-DNN mixes,
each involving different numbers of concurrently executed
DNNs. Specifically, we created 3 mixes for 3 concurrent
DNNs, another 3 mixes for 4 concurrent DNNs, and 3
more mixes for 5 concurrent DNNs. Figure 13 demonstrates
the advantage of FairBoost on overall performance gain of
×2.62 over the baseline and ×1.61 over the GA for mixes
of 3 concurrently executing DNNs. FairBoost maintains this
advantage in the case of 4 DNNs. Specifically, it has a 98%
and 15% higher overall gain compared to the baseline and
GA, respectively. We observe a small drop in average overall

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 12

0.0
0.5
1.0
1.5
2.0
2.5

1 2 3 AvgN
or

m
al

iz
ed

T
Baseline

RR (CPU)

0.0
0.5
1.0
1.5
2.0
2.5

1 2 3 AvgN
or

m
al

iz
ed

T

RR (GPU)
MOSAIC [37]

ODMDEF [38]

0.0
0.5
1.0
1.5
2.0
2.5

1 2 3 AvgN
or

m
al

iz
ed

T

GA [2]
FairBoost

0.0
0.2
0.5
0.8
1.0

1 2 3 Avg

Fa
ir

ne
ss

J

0.0
0.2
0.5
0.8
1.0

1 2 3 Avg

Fa
ir

ne
ss

J

0.0
0.2
0.5
0.8
1.0

1 2 3 Avg

Fa
ir

ne
ss

J

0.0
1.0
2.0
3.0
4.0

1 2 3 AvgO
ve

ra
ll

ga
in

O

Mixes

(a) Mixes of 3 concurrent DNNs

0.0
1.0
2.0
3.0
4.0

1 2 3 AvgO
ve

ra
ll

ga
in

O

Mixes

(b) Mixes of 4 concurrent DNNs

0.0
1.5
3.0
4.5
6.0

1 2 3 AvgO
ve

ra
ll

ga
in

O

Mixes

(c) Mixes of 5 concurrent DNNs

Fig. 13: Comparison of Normalized Throughput T; Jain fairness index J; and Overall throughput/fairness gain O for 3
different mixes, each of (a) 3, (b) 4, and (c) 5 randomly selected DNNs.

gains compared to mixes of 3 DNNs, mostly because of
the second mix where the GA achieves unusually better
management. At this point, we understand that the gap
could be alleviated if FairBoost was retrained or fine-tuned.
However, since this is a single case and not a repeating
pattern, we can safely consider this mix an outlier. Finally,
regarding mixes of 5 DNNs FairBoost surpasses by a factor
of ×4.15 and ×1.56 the baseline and the GA, respectively.

In conclusion, these experimental results not only em-
phasize the utility and adaptability of our approach but also
signal its potential for a broader impact, providing a robust
solution for handling complex multi-DNN workloads across
an expansive range of heterogeneous embedded systems.

5.5 Run-time performance evaluation

We evaluated the time required for each framework to
process a random mix of multiple DNNs, specifically with
3, 4, and 5 DNNs running concurrently. As expected, the
baseline method was the fastest, as it simply allocated all
DNNs to the GPU without any decision-making overhead.
However, this approach failed to take full advantage of
the system’s diverse hardware, resulting in lower overall
gain O, as shown in Figures 9(c)-11(c). In contrast, both
MOSAIC and ODMDEF had relatively quick inference times
of approximately ∼ 1 second. But they were slowed down
by the extensive data collection needed for their decision-
making processes. MOSAIC, for instance, needed over 35K
data points for just one query to its trained linear regression
model. ODMDEF was even more data-intensive, requiring
two queries per DNN layer to the same model and another
query to a trained k-NN classifier, totaling over 250K
data points. Despite the speed of decision-making, both
frameworks yield sub-optimal results, compromising both
throughput and fairness, as shown in Figures 9(c)-11(c). The
GA method, requiring retraining for each workload and an

optimization layer to reduce pipeline stages, extends run-
time response despite optimization in overall gain O. This
method took ∼ 5 minutes for each mix in our tests.

Notably, FairBoost, manages to maintain satisfactory
run-time performance due to the low number of trainable
parameters. It determined an efficient mapping in ∼ 2
seconds, demonstrating the best balance between run-time
performance and overall throughput/fairness gain O, ren-
dering the most efficient framework.

6 LIMITATIONS

FairBoost targets both fairness and throughput in multi-
DNN workloads on heterogeneous embedded systems. Still,
we are planning on more extensions. Specifically, the exist-
ing managers, including FairBoost, do not deploy any DNN
compression mechanism, and thus, they cannot support
higher-order workloads. To that end, we plan on extend-
ing FairBoost with a synergistic pruning and quantization
module that can further expand the capabilities of modern
embedded devices regarding both workload requirements
and QoS. Furthermore, while it facilitates knowledge trans-
fer between platforms, FairBoost is limited to embedded
systems that support ARM CL. To that end, we are planning
on extending the backend of our framework and supporting
NVIDIA platforms, such as the Jetson Orin. This could
open new challenges in terms of knowledge transfer, and
we would most likely have to reformulate the input of the
agent. Specifically, the agent would have to become multi-
modal and accept information on the complexity of each
DNN in the workload as well as the features of the different
computing components. Overall, we are planning on ex-
ploring several additional aspects that come with resource-
constrained environments in embedded systems.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 13

7 CONCLUSION

The rise of Deep Neural Networks (DNNs) has resulted
in complex workloads employing multiple DNNs concur-
rently. This trend raises challenges in managing these multi-
DNN workloads efficiently, especially in heterogeneous em-
bedded systems. Current workload managers cannot effi-
ciently handle such workloads leading to reduced system
throughput, mainly due to contention and uneven perfor-
mance among various DNN models. In this work, we pro-
pose FairBoost, a run-time manager targeting both system
throughput and fair multi-DNN execution. Our evaluation
highlights the efficiency of FairBoost in managing multi-
DNN workloads. In our experiments involving 18 DNNs
across a range of scenarios, FairBoost demonstrates a sig-
nificant average improvement in throughput and fairness
by ×3.24 when compared to the state-of-art. Moreover,
FairBoost demonstrates robustness in knowledge transfer
allowing us to transfer the agent across multiple boards
without any retraining or fine-tuning. In summary, Fair-
Boost addresses the complexities of managing multi-DNN
workloads on heterogeneous embedded systems and can
efficiently produce pipelines that co-optimize throughput
and fairness.

ACKNOWLEDGMENT

This work is supported in part by grant NSF CCF 2324854.

REFERENCES

[1] H. Kwon et al., “Heterogeneous dataflow accelerators for multi-
dnn workloads,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2021, pp. 71–83.

[2] D. Kang et al., “Scheduling of deep learning applications onto
heterogeneous processors in an embedded device,” IEEE Access,
2020.

[3] C. Hsieh et al., “Surf: Self-aware unified runtime framework for
parallel programs on heterogeneous mobile architectures,” in 2019
IFIP/IEEE 27th International Conference on Very Large Scale Integra-
tion (VLSI-SoC). IEEE, 2019.

[4] B. Cox et al., “Masa: Responsive multi-dnn inference on the edge,”
in 2021 IEEE International Conference on Pervasive Computing and
Communications (PerCom). IEEE, 2021, pp. 1–10.

[5] H. Kwon, L. Lai, T. Krishna, and V. Chandra, “Herald: Optimizing
heterogeneous dnn accelerators for edge devices,” arXiv preprint
arXiv:1909.07437, vol. 57, 2019.

[6] C.-J. Wu et al., “Machine learning at facebook: Understanding
inference at the edge,” in 2019 IEEE international symposium on high
performance computer architecture (HPCA). IEEE, 2019, pp. 331–344.

[7] O. Spantidi et al., “Targeting dnn inference via efficient utilization
of heterogeneous precision dnn accelerators,” IEEE Transactions on
Emerging Topics in Computing, 2022.

[8] A. Karatzas and I. Anagnostopoulos, “Omniboost: Boosting
throughput of heterogeneous embedded devices under multi-dnn
workload,” arXiv preprint arXiv:2307.03290, 2023.

[9] S. Eyerman and L. Eeckhout, “System-level performance metrics
for multiprogram workloads,” IEEE micro, vol. 28, no. 3, pp. 42–53,
2008.

[10] S. Kim, J. Zhao, K. Asanovic, B. Nikolic, and Y. S. Shao, “Aurora:
Virtualized accelerator orchestration for multi-tenant workloads,”
in Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, 2023, pp. 62–76.

[11] S. Kim, H. Genc, V. V. Nikiforov, K. Asanović, B. Nikolić, and Y. S.
Shao, “Moca: Memory-centric, adaptive execution for multi-tenant
deep neural networks,” in 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2023, pp.
828–841.

[12] H. Fan, S. I. Venieris, A. Kouris, and N. Lane, “Sparse-dysta:
Sparsity-aware dynamic and static scheduling for sparse multi-
dnn workloads,” in Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture, 2023, pp. 353–366.

[13] Y. Li, A. Louri, and A. Karanth, “A high-performance and energy-
efficient photonic architecture for multi-dnn acceleration,” IEEE
Transactions on Parallel and Distributed Systems, 2023.

[14] S. I. Venieris, C.-S. Bouganis, and N. D. Lane, “Multiple-deep neu-
ral network accelerators for next-generation artificial intelligence
systems,” Computer, vol. 56, no. 3, pp. 70–79, 2023.

[15] C. Wang, Y. Bai, and D. Sun, “Cd-msa: Cooperative and deadline-
aware scheduling for efficient multi-tenancy on dnn accelerators,”
IEEE Transactions on Parallel and Distributed Systems, 2023.

[16] S. Wang et al., “High-throughput cnn inference on embedded arm
big. little multicore processors,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2019.

[17] W. Jiang et al., “Exploiting potential of deep neural networks by
layer-wise fine-grained parallelism,” Future Generation Computer
Systems, vol. 102, pp. 210–221, 2020.

[18] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263–7271.

[19] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015,
pp. 815–823.

[20] X. Liu, S. Li, M. Kan, J. Zhang, S. Wu, W. Liu, H. Han, S. Shan,
and X. Chen, “Agenet: Deeply learned regressor and classifier
for robust apparent age estimation,” in Proceedings of the IEEE
International Conference on Computer Vision Workshops, 2015, pp. 16–
24.

[21] G. Levi and T. Hassner, “Age and gender classification using con-
volutional neural networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, 2015, pp. 34–42.

[22] Techcrunch, “Qualcomm next-gen xr chip promises up to
4.3k resolution per eye,” https://techcrunch.com/2024/01/04/
qualcomm-next-gen-xr-chip-promises-up-to-4-3k-resolution-per-eye/.

[23] O. Pi. (2022) Orange pi 5. [Online]. [On-
line]. Available: http://www.orangepi.org/html/hardWare/
computerAndMicrocontrollers/details/Orange-Pi-5.html

[24] A. Krizhevsky et al., “Imagenet classification with deep convolu-
tional neural networks,” Communications of the ACM, 2017.

[25] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 4510–4520.

[26] K. He et al., “Identity mappings in deep residual networks,”
in Computer Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14.
Springer, 2016, pp. 630–645.

[27] X. Zhang et al., “Shufflenet: An extremely efficient convolutional
neural network for mobile devices,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 6848–
6856.

[28] R. Jain, A. Durresi, and G. Babic, “Throughput fairness index: An
explanation,” in ATM Forum contribution, vol. 99, no. 45, 1999.

[29] C.-Y. Hsieh et al., “The case for exploiting underutilized resources
in heterogeneous mobile architectures,” in 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2019.

[30] M. Alzantot et al., “Rstensorflow: Gpu enabled tensorflow for
deep learning on commodity android devices,” in Proceedings of
the 1st International Workshop on Deep Learning for Mobile Systems
and Applications, 2017, pp. 7–12.

[31] Y. Choi and M. Rhu, “Prema: A predictive multi-task scheduling
algorithm for preemptible neural processing units,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 220–233.

[32] S. S. Latifi Oskouei et al., “Cnndroid: Gpu-accelerated execution
of trained deep convolutional neural networks on android,” in
Proceedings of the 24th ACM international conference on Multimedia,
2016, pp. 1201–1205.

[33] Y. Su et al., “Joint dnn partition and resource allocation opti-
mization for energy-constrained hierarchical edge-cloud systems,”
IEEE Transactions on Vehicular Technology, 2022.

[34] E. Baek et al., “A multi-neural network acceleration architecture,”
in 2020 ACM/IEEE 47th Annual International Symposium on Com-
puter Architecture (ISCA). IEEE, 2020, pp. 940–953.

https://techcrunch.com/2024/01/04/qualcomm-next-gen-xr-chip-promises-up-to-4-3k-resolution-per-eye/
https://techcrunch.com/2024/01/04/qualcomm-next-gen-xr-chip-promises-up-to-4-3k-resolution-per-eye/
http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-5.html
http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-5.html

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 14

[35] J. S. Jeong et al., “Band: coordinated multi-dnn inference on het-
erogeneous mobile processors,” in Proceedings of the 20th Annual
International Conference on Mobile Systems, Applications and Services,
2022, pp. 235–247.

[36] Y. Xiang and H. Kim, “Pipelined data-parallel cpu/gpu scheduling
for multi-dnn real-time inference,” in 2019 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2019, pp. 392–405.

[37] M. Han et al., “Mosaic: Heterogeneity-, communication-, and
constraint-aware model slicing and execution for accurate and
efficient inference,” in 2019 28th International Conference on Parallel
Architectures and Compilation Techniques (PACT). IEEE, 2019.

[38] C. Lim and M. Kim, “Odmdef: on-device multi-dnn execution
framework utilizing adaptive layer-allocation on general purpose
cores and accelerators,” IEEE Access, vol. 9, pp. 85 403–85 417, 2021.

[39] A. Van Den Oord, O. Vinyals et al., “Neural discrete representation
learning,” Advances in neural information processing systems, vol. 30,
2017.

[40] D. Hafner et al., “Dream to control: Learning behaviors by latent
imagination,” arXiv preprint arXiv:1912.01603, 2019.

[41] M. Hessel et al., “Rainbow: Combining improvements in deep
reinforcement learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 32, no. 1, 2018.

[42] K. He et al., “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016.

[43] C. Berner et al., “Dota 2 with large scale deep reinforcement
learning,” arXiv preprint arXiv:1912.06680, 2019.

[44] S. Huang and S. Ontañón, “A closer look at invalid action masking
in policy gradient algorithms,” arXiv preprint arXiv:2006.14171,
2020.

[45] ARM. (2017) Arm compute library. [Online]. [Online]. Available:
https://www.arm.com/technologies/compute-library

[46] J. Djolonga et al., “On robustness and transferability of convolu-
tional neural networks,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 16 458–16 468.

[47] A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information processing
systems, vol. 32, 2019.

[48] G. Brockman et al., “Openai gym,” arXiv preprint arXiv:1606.01540,
2016.

[49] K. He et al., “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1026–1034.

Andreas Karatzas received the Integrated Mas-
ter degree (Diploma) from the department of
Computer Engineering and Informatics (CEID),
University of Patras, Patras, Greece, in 2021.
He is currently pursuing the Ph.D. degree at the
School of Electrical, Computer and Biomedical
Engineering at Southern Illinois University, Car-
bondale, Illinois, as a member of the Embedded
Systems Software Lab. His research interests
include embedded systems, approximate com-
puting, and deep learning.

Iraklis Anagnostopoulos is an Associate Pro-
fessor at the School of Electrical, Computer and
Biomedical Engineering at Southern Illinois Uni-
versity, Carbondale. He is the director of the
Embedded Systems Software Lab, which works
on run-time resource management of modern
and heterogeneous embedded many-core archi-
tectures, and he is also affiliated with the Center
for Embedded Systems. He received his Ph.D. in
the Microprocessors and Digital Systems Labo-
ratory of National Technical University of Athens.

His research interests lie in the area of approximate computing, hetero-
geneous hardware accelerators, and hardware/software co-design.

https://www.arm.com/technologies/compute-library

	Introduction
	Motivation
	Related Work
	Proposed Framework
	DNN decomposition
	Latent layer representation
	Agent
	Environment
	Training acceleration
	Knowledge transfer

	Experimental Evaluation
	VQ-VAE Encoder Training
	Agent Learning Strategy
	Throughput and Fairness comparison
	Knowledge transfer evaluation
	Run-time performance evaluation

	Limitations
	Conclusion
	References
	Biographies
	Andreas Karatzas
	Iraklis Anagnostopoulos

