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CONFIDENCE INTERVALS 

1 Sampling distribution of sample mean (𝑿̅)   

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent and identically distributed (i.i.d) random variables with 𝐸(𝑋) = 𝜇  

and  𝑉𝑎𝑟(𝑋) = 𝜎2.  Consider the expectation and standard deviation of the sample mean (𝑋̅) : 

𝑋̅ =
1

𝑛
(𝑋1 + 𝑋2 + 𝑋3 + ⋯ + 𝑋𝑛) 

𝐸(𝑋̅) =
1

𝑛
(𝐸(𝑋1) + 𝐸(𝑋2) + ⋯ + 𝐸(𝑋𝑛)) = 𝜇 

 

𝑉𝑎𝑟(𝑋̅) =
1

𝑛2
(𝑉𝑎𝑟(𝑋1) + 𝑉𝑎𝑟(𝑋2) + ⋯ + 𝑉𝑎𝑟(𝑋𝑛)) =

𝜎2

𝑛
 

 

𝑆𝐷(𝑋̅) =
𝜎

√𝑛
. 

We can standardize (compute the z-score of) the sample mean: 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛:   𝑍𝑋̅ =  (
𝑋̅ − 𝐸(𝑋̅)

𝑆𝐷(𝑋̅)
) =

𝑋̅ − 𝜇

𝜎/√𝑛 
 

The Central Limit Theorem (CLT) tells us that the distribution of 𝑍𝑋̅ approaches standard normal as 

𝑛 approaches infinity: 

𝑇ℎ𝑒 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝐿𝑖𝑚𝑖𝑡 𝑇ℎ𝑒𝑜𝑟𝑒𝑚:    lim
𝑛→∞

   (
𝑋̅ − 𝜇

𝜎/√𝑛 
) ~𝑁(0, 1) 

If the population is normally distributed, then 𝑍𝑋̅~𝑁(0, 1) regardless of the sample size. 

 

2 Confidence Intervals  

 

A confidence interval (CI) is an interval that is likely to contain a parameter of interest. A two-sided 

confidence interval has the following form: 

(𝑝𝑜𝑖𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒) ± (𝑚𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟)   

𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝐶𝐼:   2 × (𝑚𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟) 

The confidence level indicates the proportion of intervals that contain the parameter, if the experiment 

is repeated a large number of times.  For example, a 95% confidence level means that if we repeat 
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the experiment many times and construct the 95% CI for each experiment, we expect that 95% of 

these intervals contain the parameter. Once the CI is constructed, the probability of the parameter 

lying in the interval is either 0 (if the parameter is outside the interval) or 1 (if the parameter is inside 

the interval). 

3 Confidence intervals for population mean (𝝁)   

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent and identically distributed (i.i.d) random variables with 𝐸(𝑋) = 𝜇  

and  𝑉𝑎𝑟(𝑋) = 𝜎2.  We know from the CLT that    

 

𝑍𝑋̅ =  (
𝑋̅ − 𝐸(𝑋̅)

𝑆𝐷(𝑋̅)
) ~𝑁(0,1) 

 

provided that 𝑛 is large. If  𝑋 is normally distributed, then  𝑍𝑋̅~𝑁(0,1) regardless of the sample 

size 𝑛.   

 

3.1 Known population standard deviation  

 

Two-sided CI for population mean 𝜇 has the following form 

 

𝑇𝑤𝑜˗𝑠𝑖𝑑𝑒𝑑 𝐶𝐼 𝑓𝑜𝑟  𝜇 ∶    𝑋̅ ± 𝑧𝑐𝑟 𝑆𝐷(𝑋̅)      where  𝑆𝐷(𝑋̅) =
𝜎

√𝑛
 

𝑚𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟:   𝑧𝑐𝑟𝑆𝐷(𝑋̅) = 𝑧𝑐𝑟

𝜎

√𝑛
 

 

where 𝑧𝑐𝑟 is the critical value of standard normal distribution that depends on the confidence level: 

For   (1 − 𝛼) × 100%  confidence:   𝑧𝑐𝑟 = Φ−1(1 − 𝛼/2) where Φ is the standard normal CDF. 

 

 

 

𝑃(−𝑧𝑐𝑟  ≤ 𝑍𝑋̅ ≤ 𝑧𝑐𝑟) = 1 − 𝛼 
 

For 95% confidence (𝛼 = 0.05),   

𝑧𝑐𝑟 = 1.96. 

 

 

 

Example: Generate a single sample of 4 observations from a normal distribution with mean 12 and 

standard deviation 10. Construct a two-sided, 95% confidence interval for the population mean, and 

check whether the confidence interval captures the population mean.  

-1.96 0 1.96

p=0.025 p=0.025

95% Confidence Intervals

-1.6449 0

p=0.05

0 1.6449

z

p=0.05
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You can skip the comments after % sign.  The line numbers (e.g. *Line1*) will be needed when 

modifying the code. 

 

 

Plot the observation points as black dots scattered vertically. On the same plot, show the confidence 

limits as green pluses. Check whether the confidence interval was able to capture the true mean. If 

the confidence interval has missed the true mean, show a red asterisk where the true mean is:  

 

 

Run this code several times, until you get at least one unsuccessful interval (shown as a red asterisk). 

As a very rough average, you need 20 trials (5% of the time) to get an unsuccessful interval. For each 

trial, check the sample mean and the margin of error on the title. The sample mean should change 

every time you run the code, while the margin of error should not. 

n=4; % *Line 1* 

pm=12;  ps=10;  % population mean and std    *Line 2* 

figure;  hold on;  % start an empty figure *Line 3* 

%*Line 4* 

i=1;    % *Line 5* 

x=pm+ps*randn(n,1);  % *Line 6* 

mx=mean(x); % *Line 7* 

zcr=1.96;  % *Line 8* 

sem=ps/sqrt(n);  % standard error of the mean  *Line 9* 

me=zcr*sem; % margin of error,  *Line 10* 

CI1= mx-me;    % lower CI bound *Line 11* 

CI2= mx+me;   % upper CI bound *Line 12* 

 

plot(i*ones(1,n), x, 'k.','markersize',5); % show points *Line 13* 

plot(i*ones(1,2),[CI1, CI2],'g+') % show CI * Line 14*  

if pm<CI1 || pm>CI2  % missed    *Line 15* 

 plot(i,pm,'r*','markersize',10)  %*Line 16* 

% *Line 17* 

end  % *Line 18* 

%*Line 19* 

xlabel('experiment number')  % *Line 20* 

ylabel('observations ')  % *Line 21* 

title(['95% CI:',num2str(mx,3), '\pm',num2str(me,3)]), shg  %*Line 22 *  
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The margin of error (𝑧𝑐𝑟
𝜎

√𝑛
)  is inversely proportional to the square root of the sample size. To 

halve the margin of error, we need to increase the sample size by 4.  Modify the sample size and 

confirm that margin of error is halved:  

 

To see what happens when we repeat the experiment many times, we will use a for loop (unless 

willing to run the code by hand many times).  We will start with a relatively small number of 

repetitions (20). Modify the two lines (Line 5 and Line 19) as follows: 

 

 
 

 
 

Count the number of misses (shown as red *). The number of experiments (20) is still not very big, 

and the number of misses will depend on our luck (or, what the current “seed” is).  On average, we 

expect to see one unsuccessful interval every time we run the code. Run the code several times to see 

how the number of misses changes. 

If we perform the experiment a large number of times, we expect that 95% of our intervals contain 

the population mean. With 1000 repetitions, approximately 950 should capture the population mean. 

To test this, we will count the number of misses and show it on the title: 

 
 

 
 

 
 

 
 

As we increase the number of experiments (and thus the number of confidence intervals), the 

proportion of misses should get closer to 5%. 

n=16         % Line 1  

for i=1:20 ;   % Line 5 

end            % Line 19  

miss_count=0;   % Line 4 

for i=1:1000;   % Line 5 

miss_count=miss_count+1;   % Line 17 

title([num2str(miss_count),' misses out of 1000']) % Line 22 
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The previous example was just an academic exercise explaining the meaning of confidence 

intervals. In real life, we face two challenges: 

 We do not know the population standard deviation. If we knew it, we probably would know 

the population mean as well, and there wouldn’t be any need to construct a confidence 

interval.  

 We do not have the opportunity to repeat the experiment many times, and we have to rely on 

a single confidence interval, based on a single sample. We will not know if we are lucky or 

not with the particular confidence interval we computed, we are just confident that if we 

repeated the experiment many times, a certain percentage of such intervals will contain the 

population mean. 

 

3.2 Unknown population standard deviation  

 

If we do not know the population standard deviation (𝜎), we can substitute sample standard 

deviation (𝑆)   

𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛:       𝑆 = √
1

𝑛 − 1
∑(𝑋𝑖 − 𝑋̅)2

𝑛

𝑖=1

. 

 

However, when we standardize the sample mean using (
𝑆

√𝑛
), the resulting statistic has student-t 

distribution with (n-1) degrees of freedom.  

Gosset’s Theorem: Suppose 𝑋1, 𝑋2, … , 𝑋𝑛,  be a random sample from a normal distribution with 

unknown mean 𝜇 and unknown variance 𝜎2. Let the sample mean and sample standard deviation 

be  𝑋̅ and 𝑆, respectively. Then the random variable 

𝑇𝑋̅ =
𝑋̅ − 𝜇

(
𝑆

√𝑛
)

 

has student-t distribution with (𝑛 − 1) degrees of freedom. 

Gosset’s theorem holds approximately for samples from non-normal populations, for 𝑛 ≥ 30. 
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A two-sided CI for population mean  𝜇, with unknown  𝜎  has the following form:  

𝑇𝑤𝑜˗𝑠𝑖𝑑𝑒𝑑 𝐶𝐼 𝑓𝑜𝑟 𝜇 𝑤ℎ𝑒𝑛 𝜎 𝑖𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛:      𝑋̅ ± 𝑡𝑐𝑟

𝑠

√𝑛
 

𝑚𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟:   𝑡𝑐𝑟

𝑠

√𝑛
 

where 𝑡𝑐𝑟 is the critical value of student-t distribution that depends on the confidence level and the 

degrees of freedom (𝑛 − 1).  For (1 − 𝛼) × 100%   confidence,  𝑡𝑐𝑟 = 𝐹−1(1 − 𝛼/2) where 𝐹 is the 

CDF of the student t-distribution with (𝑛 − 1) degrees of freedom, and  𝐹−1  is the inverse of  𝐹.  

The critical t value satisfies   𝑃(−𝑡𝑐𝑟  ≤ 𝑇𝑋̅ ≤ 𝑡𝑐𝑟) = 1 − 𝛼.  Because student t- distribution is 

symmetric, the shortest interval is obtained when the upper and lower tail probabilities are the same. 

That is,  

𝑃( 𝑇𝑋̅ < −  𝑡𝑐𝑟) = 𝛼/2  and  𝑃(𝑇𝑋̅ > 𝑡𝑐𝑟) = 𝛼/2. 

4 Confidence intervals for variance (𝝈𝟐)  of a normally distributed population 

 

To construct a confidence interval for population variance, we use the following theorem: 

 

Theorem: Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from a normal distribution with mean  

𝜇 and variance 𝜎2, and let 𝑆2 be the sample variance. Then the random variable  (𝑛 − 1)𝑆2/𝜎2 

follows a chi-squared (𝜘2) distribution with (𝑛 − 1) degrees of freedom. That is,  

(𝑛 − 1)𝑆2

𝜎2
~𝜒𝑛−1

2 . 

 

 

Given a sample of size 𝑛 with 𝑠2, a two-sided, (1 − 𝛼) × 100%   confidence interval for the 

population variance (𝜎2) can be constructed by assigning equal probability to the two tails:  
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crightcleft  

 

 

 

[
(𝑛 − 1)𝑠2

𝑐𝑟𝑖𝑔ℎ𝑡
  ,

(𝑛 − 1)𝑠2

𝑐𝑙𝑒𝑓𝑡
] 

 

 

 

The critical values 𝑧𝑐𝑟 , 𝑡𝑐𝑟 , 𝑐𝑟𝑖𝑔ℎ𝑡 𝑎𝑛𝑑 𝑐𝑙𝑒𝑓𝑡 values can be determined using inverse cumulative 

distribution function, as shown below.  

 

5  Example:    

The cross sectional area measurements (in2) from ten steel specimens are as follows: 

 𝑥 = [105, 118, 77, 108, 103, 87, 96, 103, 136, 128]. Assuming that the cross sectional areas of the 

specimens are normally distributed as 𝑋~𝑁(𝜇, 𝜎2) construct a two-sided 95% confidence interval for 

the following cases: 

(a) Construct an interval for 𝜇, assuming 𝜎 = 10. 

(b) Construct an interval for 𝜇, assuming 𝜎 is unknown. 

(c) Construct an interval for 𝜎2. 
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x=[105, 118, 77, 108, 103, 87, 96, 103, 136, 128] % measurements 

n=length(x);   % sample size 

m=mean(x);     s=std(x);  

alpha=0.05;  % for 95% confidence level 

% ------  part a -------- 

sigma=10; % population standard deviation 

zcr=norminv(1-alpha/2)   % zcr for two-sided CI 

me=zcr*sigma/sqrt(n);   % margin of error 

lower = m-me;   upper = m+me; 

CIa=[lower,upper] 

%------  part b -------- 

tcr=tinv(1-alpha/2, n-1)  % tcr for two-sided CI 

me = tcr*s/sqrt(n); 

lower = m-me;   upper = m+me; 

CIb=[lower,upper] 

%------- part c ---------- 

cright=chi2inv(1-alpha/2,n-1); 

cleft=chi2inv(alpha/2,n-1); 

lower = (n-1)*s^2/cright;   upper = (n-1)*s^2/cleft; 

CIc=[lower,upper] 

 

 


