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 ET 438a 
 Automatic Control Systems Technology 
 Laboratory 4 
 Practical Differentiator Response 
 
Objective:    Design a practical differentiator circuit using common OP AMP circuits.   

Test the frequency response and phase shift of the differentiator with a 
variable frequency sine wave signal.  Compare the lab measurements to 
the theoretical calculations for the circuit to check the design.  Observe 
the differentiator output signals for various types of input signals 
commonly used in lab. 

 
Theoretical Background 
 
The mathematical operation of differentiation can be simulated by removing the input 
resistor in an inverting OP AMP circuit and inserting a capacitor.  This ideal 
differentiator circuit is show in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If ideal OP AMP circuit operation is assumed, no current will flow into the inverting 
terminal of the amplifier due to the infinite input impedance.  Also, the voltage between 
the inverting and non-inverting terminal is equal due to the effects of the negative 
feedback.  This means that the voltage at the inverting terminal is at ground potential. 
So: 
      -If =  IC 
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Figure 1.  Ideal Differentiator Circuit. 



 

Fall 2011 Lab38a4.doc 
 

 2 

The current in the capacitor is given by: 
  

Combining the last three equations above gives the input-output relationship of the 
ideal differentiator circuit. 

The constant, Kd define in Equation 2b is the differentiators gain.  This differentiator 
circuit only has current flowing in the input when there is change in Vi(t).  When there is 
no change in the input voltage, no current will flow and the output voltage Vo(t) will be 
zero.  The ideal differentiator circuit only produces an output when ever there is a 
change in the input signal.  This is useful in control circuits where rapid response to a 
change in the control variable is necessary. 
 
Another way of examining the circuit is to check its output gain response to sine waves 
of different frequencies.  When the gain of these tests is represented in db and the 
frequency is plotted on a logarithmic scale, a Bode plot is produced.  Bode plots are 
used to determine the stability of control systems and the frequency response of filter 
circuits. 
 
To find the Bode plot of the ideal differentiator circuit, the first step is to take the 
Laplace transform of the input-output relationship of Equation 2a.  In the Laplace 
domain, differentiation in time converts to multiplication by the complex variable s.  (s 
represents the complex frequency - transient and sine response of a system.)  
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Taking the Laplace transform of 2a gives: 
 

Equation 3c is the transfer function of the ideal differentiator circuit of Figure 1.  To 
convert this to a Bode plot, we must replace the complex variable s with its imaginary 
part to find the change of the circuit's gain as frequency changes, the magnitude and 
phase shift of the transfer function can be found.  The magnitude and phase of any 
complex quantity can be found from the following relationships: 

Where   z = a complex value 
    Re(z) = the real part of z 
    Im(z) = the imaginary part of z 
    φ = the phase angle of z 

 
The equations below show this theory applied to the ideal differentiator circuit. 

The equations in (5) show that the gain of this circuit increases as the frequency 
increases.  In fact, the circuit has an infinite gain to high frequency signals.  The phase 
shift is a constant -90 degrees.  This includes the 180 degree shift due to the inverting 
OP AMP configuration.  To construct the Bode plot the gain must be converted to db by 
using the formula 
 
   db(ω) = 20 log[Av(ω)] 
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The plots below show the gain response of the ideal differentiator circuit.  The phase 
shift is a constant -90 degree over the entire range of frequency.  Notice that the gain of 
the ideal differentiator increases at a constant rate over the range of the plot.  The gain 
goes up 20 db for every decade (power of 10) in frequency increase.  The value of 20 
db is x10 that of the initial gain value. 

 
The ideal differentiator is not a practical circuit.  The infinite gain to high frequencies 
makes it impossible to construct because most noise signals are at high frequencies.  
Using the configuration shown is Figure 1 will cause the OP AMP circuit to go to 
saturation due to the high gain amplification of this electrical noise. 
 
The bias current flowing in Rf also produces offset voltage error in the output.  This 
voltage error can be minimized by adding an appropriately sized resistor in the non-
inverting input of the OP AMP.  The bias currents flowing through these resistors will 
develop a common mode voltage (same magnitude and phase) at the inputs to the OP 
AMP.  The common mode voltage will not be amplified. 
 
Note that the gain of the circuit reaches 0 db (1) at the frequency given by the value  
 
     ωc = 1/RC 

 
Where   ωc = the cutoff frequency of the device in rad/s 
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Figure 2.  Ideal Differentiator Frequency Response. 
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Practical OP AMP Differentiators 
 
Figure 3 shows a practical integrator 
circuit that overcomes the limitations 
of the ideal circuit and still simulates 
the integrator action that is useful in 
control applications.  This circuit is 
also known as an active highpass 
filter. 
 
The value of resistor Rb is given by 
the parallel combination of the input 
and feed back resistances.  In 
equation form this is: 
     

    Rb = Ri || Rf  = Rf(Ri)/(Rf+Ri) 
 
If the transfer characteristic of an inverting OP AMP circuit is written as the ratio of two 
impedances that have been converted using the rules of the Laplace transform, then 
the elements in the input branch can be combined using the rules of series 
impedances. The resulting value can then be substituted into the inverting gain formula 
and the transfer function written without a large amount of computation. 
The following equations sketch out the mathematics used to find the transfer function 
for the practical integrator circuit.  

Taking the Laplace of 6a gives 6b.  The term 1/Cs can be interpreted as impedance 
and used in the series resistance formula to give the simplified value of the resistor and 
capacitor in the input branch Zi(s) in 6c. 
 
Substituting the value of Zi(s) into the gain gives the transfer function as a function of 
the complex variable s. 
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Figure 3.  Practical Differentiator Circuit. 
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In the transfer function Av(s), the ratio of Rf/Ri, which is the same as the dc gain of an 
inverting OP AMP configuration, defines the gain the integrator has to a constant dc 
signal.  This stabilizes the differentiator gain and eliminates the saturation effects of 
amplifier high frequency noise.  The remainder of the transfer function defines the 
differentiator action of the circuit. 
 
If the variable s is replaced by jω, and the magnitude and phase angle determined from 

procedures similar to the ideal case, the gain and phase shift can be found for any 
sinusoidal input frequency.  These relationships are 

The frequency in these equations is given in radians/sec.  To convert the values to 
Hertz use the following relationship. 
 
     2πf = ω 

 
This function models the response of a high pass active filter.  The ratio of Rf/Ri sets 
the gain in the pass band. The point where the gain begins to decrease is called the 
cutoff frequency.  This is defined as the point where the gain is down 3 db from the gain 
in the pass band.  A 3 db reduction in gain corresponds to a 0.707 reduction in the 
output voltage from the level in the pass band. This point is defined by 
 
    fc = 1/2πRiC  Hz 

 
    ωc = 1/RiC rad/S 
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After the cutoff point is reached, the gain of the circuit falls at a rate of 20 db/decade, 
just as in the ideal differentiator circuit.  To use the practical differential as an 
differentiator, the highest frequency expected to be encountered in a control system 
must fall into this part of the circuit response.  As "a rule of thumb" for designing a 
practical differentiator in a control system, set fc to be 10 times the highest frequency 
encountered. The following figures show the Bode plots of gain and phase response for 
the practical differentiator circuit. 

 
In this plot the dc gain of the integrator is 2 (6 db) and the cutoff frequency is 100 rad/s 
(159.15 Hz).  At the cutoff frequency, the output is down 3 db +3 db because the gain in 
the pass band is greater than 1. The phase plot includes the 180 degree phase shift 
due to the inverting action of the integrator circuit.  The phase and the gain will both be 
important when the stability of control systems are examined. 

 

10 100 1 10
3

1 10
4

1 10
5

15

10

5

0

5

10

Frequency (rad/s)

G
a
in

 (
d
b
)

3

.20 log A vp ω
k

100

ω
k

 

Figure 4.  Gain Plot of Practical Differentiator Circuit Showing Cutoff Frequency. 
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In the pass band, well above the frequency of 100 rad/s, the only phase shift is from the 
inverting action of the OP AMP circuit.  As the frequency decreases, the phase shift 
increases to a value of 45 degrees at the cutoff frequency. The phase shift continues to 
increase as the frequency decreases and will asymptotically approach 90 degrees for 
very low frequencies.  
 
 
Time Response of a Practical Differentiator to Common Waveforms 
 
An differentiator circuit simulates the mathematical operation of differentiation.  Table 1 
shows the results of applying common waveforms to the differentiator and how these 
wave forms can be modeled using mathematical formulae. 
 
Table 1.  Differentiator Time Response 

Mathematical Model Differentiator Circuit 

Function Equation Derivative (t) Waveform In Waveform Out 

Constant K 0 Square wave 0 

line Kt K Triangle Square wave 

sinusoidal Amaxsin(ωt) Amaxωcos(ωt) Sine Wave Shifted Sine 
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Figure 5.  Phase Plot of Practical Differentiator Circuit. 
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When an inverting differentiator is used, the sign of the output will be opposite of the 
mathematical model.  If a positively increasing constant is applied to the practical 
integrator, (the positive half cycle of a triangle) the resulting output will be a negative 
part of a square wave. 
 
To achieve the derivative action on these wave forms the input frequency must follow 
the x10 fc rule introduced above.  The gain will be increasing as the frequency 
increases as predicted by the Bode plots, so the magnitude of the output will increase 
until the pass band is reached.  At this point the derivative action will stop and the signal 
will be amplified by a constant gain.  
 
Design Project - Practical Integrator Circuits and Responses. 
 
Design a practical differentiator circuit that has a dc gain in the pass band of 10 db and 
a cutoff frequency of 1000 Hz.   Document all the design values for the lab report. Test 
the design and compare it to the expected theoretical values. 
 
1.)   To check the frequency response, apply a 1 Vp-p sinusoidal ac signal to the input.  
Generate the test points for the Bode plot by applying the following signal frequencies: 
 
     
    100 Hz 
    200 Hz 
    500 Hz 
    700 Hz 
    1000 Hz 
    2.5 kHz 
    5 kHz 
    7 kHz 
    10 kHz 
    15 kHz 
    20 kHz 
 
Maintain the input voltage constant and record the output voltage and phase shift for 
each of the listed frequencies. Use the input wave form as the reference for the phase 
measurements.  Compute the differentiator gain using the formula: 
 
    db = 20 log[ Vo /Vi]  
 
 
Using the formula for the practical differentiator derived above, compute the theoretical 
values of gain.  Plot both the measured and theoretical values on the same semi-log 
(log scale on x-axis) plot. Discuss any deviations from the theoretical curve in the lab 
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report. 
 
 
Using the formula for the practical differentiator phase shift, compute the theoretical 
values of phase shift (in degrees) and plot both the measured and theoretical values on 
the same semilog plot (log scale on x-axis).  Discuss any deviations from the theoretical 
curve in the lab report. 
 
2a. )  Apply a square wave signal with an amplitude of 1 Vp-p to the differentiator.  Use 
the following frequencies:  200 Hz, 1000 Hz, and 25 kHz.  Sketch the changes in the 
output waveform as the frequency changes and note any changes in amplitude and 
shape.  Discuss these data in the lab report.  Determine the frequency where the 
differentiator action stops. 
 
2b.)  Apply a triangle wave signal with amplitude of 1 Vp-p to the differentiator.  Use the 
following frequencies:  200 Hz, 1000 Hz, and 25 kHz.  Sketch the changes in the output 
waveform as the frequency changes and note any changes in amplitude and shape.  
Discuss these data in the lab report.  Determine the frequency where the differentiator 
action stops. 
 
3.)  Derive the transfer function for the differentiator designed in the lab by substituting 
the design values into the final formula in (7).  Include the simplified transfer function in 
the lab report along with a schematic that shows all the computed design values. 
 


